一种涡轮发电机用微涡轮及导风结构尺寸计算方法技术

技术编号:27136307 阅读:22 留言:0更新日期:2021-01-25 20:50
本发明专利技术公开了一种涡轮发电机用微涡轮及导风结构尺寸计算方法,包括底部支撑台、导风结构和风叶片,所述底部支撑台为圆盘结构,且中心设有轴孔,所述导风结构设于底部支撑台内部,所述导风结构为多个弯曲的加强筋,所述风叶片设于底部支撑台外部,所述导风结构与风叶片平顺过渡;减少反射风量,启动风速更低,可降低启动风速3m/s以上;疏导风的方向,减少风阻,增大了冲向风叶片的风力,进而降低风能的损耗,提高了涡轮发电机的功率,功率提高5%以上。上。上。

【技术实现步骤摘要】
一种涡轮发电机用微涡轮及导风结构尺寸计算方法


[0001]本专利技术属于发电设备
,具体地说,本专利技术涉及一种涡轮发电机用微涡轮及导风结构尺寸计算方法。

技术介绍

[0002]目前,我们所使用涡轮发电机中的辐流涡轮的迎风台是平面结构,其缺点是:
[0003]从前部来的风因风速矢量正对应涡轮法线,部分风力返回,造成风能损耗严重。
[0004]现有的涡轮风叶片的高度较低,风道界面小,不能充分扩大收风量,造成其风道上形成涡流等现象,进而不能充分利用风能,使涡轮的发电效率大大降低。

技术实现思路

[0005]本专利技术提供一种涡轮发电机用微涡轮及导风结构尺寸计算方法,以解决上述
技术介绍
中存在的问题。
[0006]为了实现上述目的,本专利技术采取的技术方案为:一种涡轮发电机用微涡轮,包括底部支撑台、导风结构和风叶片,所述底部支撑台为圆盘结构,且中心设有轴孔,所述导风结构设于底部支撑台内部,所述导风结构为多个弯曲的加强筋,所述风叶片设于底部支撑台外部,所述导风结构与风叶片平顺过渡。
[0007]优选的,所述导风结构沿着底部支撑台的周向均匀分布,所述风叶片沿着底部支撑台的周向均匀分布。
[0008]优选的,所述导风结构上端设有圆角。
[0009]一种涡轮发电机用微涡轮的导风结构尺寸计算方法,具体包括以下步骤,
[0010]步骤S1:根据导风结构成熟的翼型试验数据曲线,确定涡轮的形状系数a1和损耗系数ψ;
[0011]步骤S2:将涡轮的形状系数a1和损耗系数ψ代入涡轮转矩计算公式校核涡轮转矩,涡轮转矩计算公式,
[0012][0013]式中:
[0014]r2—涡轮外径,m;
[0015]r1—涡轮内径,m;
[0016]ρ—气体密度,kg/m3;
[0017]v—风速,m/s;
[0018]d0—进气孔直径,m;
[0019]a1—涡轮的形状系数;
[0020]ψ—损耗系数;
[0021]ω—角速度,1/s;
[0022]β—涡轮叶片的流出角;
[0023]步骤S3:根据涡轮转矩确定导风结构的弧度、圆角和弦长;
[0024]步骤S4:计算涡轮发电机的输出电压,涡轮发电机的输出电压计算公式,
[0025][0026]其中:
[0027]E
d
=E
O-E
ad

[0028]空载内电势为:E
O
=4k
B
fwk
W
φ
δ0
×
10-8

[0029]纵轴电势为:E
ad
=I
·
X
ad

[0030]纵轴电抗为:X
ad
=4k
B
fwk
w
φ
δ0
×
10-8

[0031]横轴电抗为:
[0032]电机漏抗为:X
S
=0.8π2fw2λ
s
×
10-8

[0033]式中:
[0034]r-电阻内值,Ω;
[0035]I-电流,A;
[0036]μ
r-永磁材料相对恢复磁导率;
[0037]k
B-波形系数;
[0038]f-频率,Hz;
[0039]w-线圈匝数;
[0040]k
w-绕组系数;
[0041]φ
δ0-空载主磁通,Wb;
[0042]φ
μ0-空载有效磁通,Wb;
[0043]φ
μ-有效磁通,Wb;
[0044]F
a-电枢反应礠动势,A;
[0045]F
δ-气隙礠动势,A;
[0046]k
aq-横轴反应系数;
[0047]δ-磁气隙,cm;
[0048]k
δ-气隙系数;
[0049]b
m-永磁体宽度,cm;
[0050]λ
s-漏磁系数;
[0051]步骤S5:根据涡轮发电机的输出电压进行确定风叶片的轴向高度。
[0052]采用以上技术方案的有益效果是:
[0053]1、该涡轮发电机用微涡轮,所述导风结构设于底部支撑台内部,所述导风结构为多个弯曲的加强筋,所述风叶片设于底部支撑台外部,所述导风结构与风叶片平顺过渡;所述导风结构沿着底部支撑台的周向均匀分布,所述风叶片沿着底部支撑台的周向均匀分布;所述导风结构上端设有圆角;导风结构为弯曲的加强筋,且上端设有圆角,起到减少反射风量,启动风速更低,可降低启动风速3m/s以上,另外所述导风结构与风叶片平顺过渡,又疏导风的方向,减少风阻,增大了冲向风叶片的风力,进而降低风能的损耗。
[0054]2、该涡轮发电机用微涡轮,风在风道中向外移动时,沿着风道曲面推动风叶片旋转,旋转的能量取决于风量,因为增高了风叶片的轴向高度,提高了所能流动的风量,从而提高了微涡轮的转速,进而提高了涡轮发电机的功率,功率提高5%以上。
附图说明
[0055]图1是本专利技术的微涡轮轴测图;
[0056]图2是本专利技术的微涡轮主视图;
[0057]其中:
[0058]1、底部支撑台;2、导风结构;3、风叶片;10、轴孔。
具体实施方式
[0059]下面对照附图,通过对实施例的描述,对本专利技术的具体实施方式作进一步详细的说明,目的是帮助本领域的技术人员对本专利技术的构思、技术方案有更完整、准确和深入的理解,并有助于其实施。
[0060]如图1至图2所示,本专利技术是一种涡轮发电机用微涡轮及导风结构尺寸计算方法,减少反射风量,启动风速更低,可降低启动风速3m/s以上;疏导风的方向,减少风阻,增大了冲向风叶片的风力,进而降低风能的损耗,提高了涡轮发电机的功率,功率提高5%以上。
[0061]具体的说,如图1至图2所示,包括底部支撑台1、导风结构2和风叶片3,所述底部支撑台1为圆盘结构,且中心设有轴孔10,所述导风结构2设于底部支撑台1内部,所述导风结构2为多个弯曲的加强筋,所述风叶片3设于底部支撑台1外部,所述导风结构2与风叶片3平顺过渡。
[0062]所述导风结构2沿着底部支撑台1的周向均匀分布,所述风叶片3沿着底部支撑台1的周向均匀分布。
[0063]所述导风结构2上端设有圆角。
[0064]一种涡轮发电机用微涡轮的导风结构尺寸计算方法,具体包括以下步骤,
[0065]步骤S1:根据导风结构2成熟的翼型试验数据曲线,确定涡轮的形状系数a1和损耗系数ψ;
[0066]步骤S2:将涡轮的形状系数a1和损耗系数ψ代入涡轮转矩计算公式校核涡轮转矩,涡轮转矩计算公式,
[0067][0068]式中:
[0069本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种涡轮发电机用微涡轮,其特征在于:包括底部支撑台(1)、导风结构(2)和风叶片(3),所述底部支撑台(1)为圆盘结构,且中心设有轴孔(10),所述导风结构(2)设于底部支撑台(1)内部,所述导风结构(2)为多个弯曲的加强筋,所述风叶片(3)设于底部支撑台(1)外部,所述导风结构(2)与风叶片(3)平顺过渡。2.根据权利要求1所述的一种涡轮发电机用微涡轮,其特征在于:所述导风结构(2)沿着底部支撑台(1)的周向均匀分布,所述风叶片(3)沿着底部支撑台(1)的周向均匀分布。3.根据权利要求1所述的一种涡轮发电机用微涡轮,其特征在于:所述导风结构(2)上端设有圆角。4.一种涡轮发电机用微涡轮的导风结构尺寸计算方法,其特征在于:具体包括以下步骤,步骤S1:根据导风结构(2)成熟的翼型试验数据曲线,确定涡轮的形状系数a1和损耗系数ψ;步骤S2:将涡轮的形状系数a1和损耗系数ψ代入涡轮转矩计算公式校核涡轮转矩,涡轮转矩计算公式,式中:r2—涡轮外径,m;r1—涡轮内径,m;ρ—气体密度,kg/m3;v—风速,m/s;d0—进气孔直径,m;a1—涡轮的形状系数;ψ—损耗系数;ω—角速度,1/s;β—涡轮叶片的流出角;步骤S3:根据涡轮转矩确定导风结构的弧度、圆角和弦长;步骤S4:计算涡轮发电机的输出电压,涡轮发电机的输出电压计算公式,其中:E
d
=E
O-E
ad
;空...

【专利技术属性】
技术研发人员:苏刚刘永明刘同海刘成虎高书乾王斌张盼
申请(专利权)人:芜湖博高光电科技股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1