一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法技术

技术编号:26793999 阅读:26 留言:0更新日期:2020-12-22 17:10
本发明专利技术提供了一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法,利用高光谱遥感技术,将光谱成像仪生成的油气管道高光谱图像输入计算机,利用BP神经网络和机器学习的方法对实验获得的油气管道光谱数据进行标记和训练,提取泄漏及缺陷等油气管道的高光谱图像及光谱特征,确定油气管道泄漏区域及缺陷位置;通过无监督机器学习熵值法对油气管道表面数据进行分级处理,再通过BP神经网络按缺陷级别进行自动分类,并按“正常”、“故障”、“警报”进行预警显示。本发明专利技术解决了目前油气管道泄漏及缺陷区域检测需要大量人工且难以定位的问题,利用高光谱遥感技术,实现了陆上油气管道的人工智能巡检,具有经济性好、适用场景广、适用对象广的特点。

【技术实现步骤摘要】
一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法
本专利技术涉及能源管道
,具体涉及一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法。
技术介绍
我国陆上油气管道总里程已超过12×104km,油气管道泄漏是长输管道平稳运营的重要安全隐患。长输管道大多输送高温、高压、易燃、易爆、剧毒和有腐蚀的介质,当管道存在缺陷时,如果处理不及时,将造成严重的环境污染和危险事故,同时也会带来巨大的经济损失。由于受管道使用年限和周围环境等因素的影响,管道传输过程中会产生各种缺陷问题,比如管道穿孔和表面腐蚀等现象,以致产生管道损坏和油气泄漏,造成安全隐患,所以对管道进行缺陷检测具有重要意义。目前管道泄漏和定位的主要方法是人工巡检、管道内部检测技术和管道外部检测技术等。但人工巡检方式存在着管网长而复杂、设施繁多、巡检效率低等缺点;管道内部检测技术主要通过对清管道应用磁通、超声、录像、涡流等技术提高泄漏检测的可靠性和灵敏度,而管道外部动态检测技术,主要包括压力点分析法、特性阻抗检测法、互相关分析法、压力波法、流量差监测法、管道瞬变模型法等,这些方法均需要大量的原始数据,现场操作存在困难,并且无法对泄漏点进行准确定位。根据调研结果,现阶段国内外涉及油气管道泄漏检测的专利有:美国专利US5117676公开了一种采用麦克风为感测元件的天然气管道泄漏检测系统;美国专利US6389881公开了一种基于模式匹配滤波技术的实时管道泄漏声学检测方法和设备;中国专利CN03137597.9公开了一种用于油气管线检测的光纤光栅传感测试系统;中国专利CN201310656020.X公开了一种非介入式压电型气体管道泄漏次声波检测装置;中国专利200710177617.0公开了一种基于压力信号和声波信号的泄漏检测定位技术等。如:专利(CN03137597.9“一种用于油气管线检测的光纤光栅传感测试系统”)提供了一种用光纤光栅传感技术对长输油管线中腐蚀、裂缝、泄漏、结蜡、结垢等状况进行多点分布检测的系统装置,通过传感器阵列检测管线中流体温度、压力变化以光纤光栅中心波长偏移的形式反射并耦合到光谱分析仪,经信号处理,获得长输油管线中的输运状况。该检测系统能获得管线中有关物理量的详细变化,但装置复杂,含近红外宽带半导体激光源阵列、波分复用器、光纤双向耦合器、光谱分析仪等,现场实用较为困难。专利(CN201310656020.X“一种非介入式压电型气体管道泄漏次声波检测装置”)所专利技术的检测装置,通过磁性基座与管壁的吸附作用固定安装于气体管道管壁外侧,通过感测气体管道泄漏时沿管内气体介质传播的次声波信号或沿管壁传播的次声波信号进行泄漏检测,是一种具有较高灵敏度的气体管道泄漏检测方法。现有专利技术涉及非介入检测技术,其实现系统较为复杂,不利于现场实用,且检测距离有限,无法实现较广区域无接触检测。
技术实现思路
本专利技术提供一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法,解决目前陆上油气管道表面出现裂纹等人眼不易观察出的泄漏或缺陷故障。为达到上述目的,本专利技术采用如下技术方案:一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法,利用高光谱遥感技术,将光谱成像仪生成的油气管道高光谱图像输入计算机,利用BP神经网络和机器学习的方法对实验获得的油气管道光谱数据进行标记和训练,提取泄漏及缺陷油气管道的高光谱图像及光谱特征,最终确定油气管道泄漏区域及缺陷位置。所述的一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法,包括以下步骤:步骤1:高光谱图像获取利用高光谱遥感技术,通过光谱成像仪获得油气管道表面高光谱图像,即油气管道表面在不同波长光的反射下的成像,为后续BP神经网络深度学习和机器学习做数据准备;步骤2:表面数据提取利用高光谱图像分析软件ENVI对油气管道表面高光谱图像进行分析,根据油气管道表面状况不同,不同波长光在其表面的反射率不同,分别提取油气管道表面高光谱图像中表面正常与缺陷处的高光谱数据;步骤3:数据分级实验获得油气管道不同表面状态的高光谱图像,根据正常及不同缺陷情况下,油气管道表面对不同光反射率不同,使用无监督机器学习熵值法对油气管道表面高光谱数据进行分级处理,即对人为认定的油气管道表面三组不同状态“正常”、“故障”、“警报”,用机器学习法对不同组别实验数据进行分级,取各级别标签中20%的数据作为测试集,其余80%的数据作为训练集;步骤4:BP神经网络对高光谱油气管道数据的分类与缺陷区域检测利用BP神经网络对步骤3生成的训练集和测试集进行训练与测试,之后即获取需要识别区域油气管道的高光谱数据,利用已训练的数据集对新获取的油气管道表面高光谱数据进行分类处理,自动根据油气管道表面状态得出“正常”、“故障”、“警报”三类缺陷预警,并进一步给出油气管道的缺陷区域;步骤5:利用机器学习最邻近结点KNN算法对步骤4的分类结果进行验证。步骤3所述使用无监督机器学习熵值法对油气管道表面高光谱数据进行分级处理,即利用熵值法的最终得分对高光谱数据进行分级,得分越高说明油气管道越安全,熵值法最终得分的计算步骤为:(1)选取N段油气管道表面高光谱数据,每段高光谱数据包含M个波长的反射率数值,则xih为第i段油气管道表面高光谱数据的第j个波长的反射率数值,其中i=1,2…,n;j=1,2,…,m;(2)反射率的归一化处理:先要对各个反射率进行标准化处理,即把反射率的绝对值转化为相对值,并令xih=|xij|;由于正向反射率和负向反射率数值代表的含义不同,正向反射率数值越高越好,负向反射率数值越低越好,因此,对于正向和负向反射率,用不同的算法进行数据标准化处理;对于正向反射率:对于负向反射率:式中,max{}与min{}分别表示取最大值与最小值,则x'ij为第i段油气管道表面高光谱数据的第j个波长的正向反射率数值,x″ij为第i段油气管道表面高光谱数据的第j个波长的负向反射率数值;归一化后的数据记为x1ij;(3)计算第i段油气管道表面高光谱数据的第j个波长的反射率占所有N段油气管道表面高光谱数据的第j个波长的反射率的比重:(4)计算第j个波长的反射率的熵值ej:其中k=1/lnn,满足ej≥0;根据熵值计算最终得分:(5)计算信息熵冗余度dj:dj=1-ej(6)计算各个波反射率的权值Wj:(7)计算各光谱信息的综合得分Si:所述利用机器学习最邻近结点KNN算法对步骤4的分类结果进行验证,是通过计算BP神经网络的分类准确率,以此来验证BP神经网络预测分类的合理性;具体如下:对于一个需要预测的输入向量X,即一段高光谱数据的M个波长反射率的数值,只需在训练集中寻找k个与输入向量X最近的向量的样本,然后把输入向量X的类别预测为这k个样本中类别数最多的那一类,即计算需要预测的向量与训练集中其他数据的本文档来自技高网
...

【技术保护点】
1.一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法,其特征在于:利用高光谱遥感技术,将光谱成像仪生成的油气管道高光谱图像输入计算机,利用BP神经网络和机器学习的方法对实验获得的油气管道光谱数据进行标记和训练,提取泄漏及缺陷油气管道的高光谱图像及光谱特征,最终确定油气管道泄漏区域及缺陷位置。/n

【技术特征摘要】
1.一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法,其特征在于:利用高光谱遥感技术,将光谱成像仪生成的油气管道高光谱图像输入计算机,利用BP神经网络和机器学习的方法对实验获得的油气管道光谱数据进行标记和训练,提取泄漏及缺陷油气管道的高光谱图像及光谱特征,最终确定油气管道泄漏区域及缺陷位置。


2.根据权利要求1所述的一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法,其特征在于:包括以下步骤:
步骤1:高光谱图像获取
利用高光谱遥感技术,通过光谱成像仪获得油气管道表面高光谱图像,即油气管道表面在不同波长光的反射下的成像,为后续BP神经网络深度学习和机器学习做数据准备;
步骤2:表面数据提取
利用高光谱图像分析软件ENVI对油气管道表面高光谱图像进行分析,根据油气管道表面状况不同,不同波长光在其表面的反射率不同,分别提取油气管道表面高光谱图像中表面正常与缺陷处的高光谱数据;
步骤3:数据分级
实验获得油气管道不同表面状态的高光谱图像,根据正常及不同缺陷情况下,油气管道表面对不同光反射率不同,使用无监督机器学习熵值法对油气管道表面高光谱数据进行分级处理,即对人为认定的油气管道表面三组不同状态“正常”、“故障”、“警报”,用机器学习法对不同组别实验数据进行分级,取各级别标签中20%的数据作为测试集,其余80%的数据作为训练集;
步骤4:BP神经网络对高光谱油气管道数据的分类与缺陷区域检测
利用BP神经网络对步骤3生成的训练集和测试集进行训练与测试,之后即获取需要识别区域油气管道的高光谱数据,利用已训练的数据集对新获取的油气管道表面高光谱数据进行分类处理,自动根据油气管道表面状态得出“正常”、“故障”、“警报”三类缺陷预警,并进一步给出油气管道的缺陷区域;
步骤5:利用机器学习最邻近结点KNN算法对步骤4的分类结果进行验证。


3.根据权利要求2所述的一种基于高光谱遥感技术的陆上油气管道缺陷诊断方法,其特征在于,步骤3所述使用无监督机器学习熵值法对油气管道表面高光谱数据进行分级处理,即利用熵值法的最终得分对高光谱数据进行分级,得分越高说明油气管道越安全,熵值法最终得分的计算步...

【专利技术属性】
技术研发人员:孙丽琼王振兴肖光宇闫静耿英三刘志远王建华
申请(专利权)人:西安交通大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1