一种基于改进的动态热模型的变压器状态确定方法技术

技术编号:26791978 阅读:36 留言:0更新日期:2020-12-22 17:07
本发明专利技术涉及电力技术领域,公开了一种基于改进的动态热模型的变压器状态确定方法,包括步骤:获取环境温度、负载率以及冷却器状态;将所述环境温度、负载率以及冷却器状态作为输入,热点温度、顶层油温、散热器温度、底层油温作为输出,根据改进的动态热模型计算获得模型参数。不同于现有热模型通过各部分温升在一定时间内的平均值来间接衡量环境温度的变化,本发明专利技术实施例提供的改进的动态热模型考虑到了环境温度的直接变化以及变压器内部温度变化对变压器油参数的影响,更能反映实际物理状况,因此所获得的变压器状态信息的准确度更高,更具实用性。

【技术实现步骤摘要】
一种基于改进的动态热模型的变压器状态确定方法
本专利技术涉及及电力设备
,尤其涉及一种基于改进的动态热模型的变压器状态确定方法。
技术介绍
在电力变压器作为电力系统中最昂贵、最重要的设备之一,担负着电网间电压变化、电能转换的功能,其负载能力是制约电网变电容量限额的主要因素,同时,它的运行状态也在很多方面深入地影响着电力系统的稳定性和可靠性。变压器绕组的热点温度是限制其负载能力的主要决定因素,它与负载电流数值、负载损耗和杂散损耗等有关。热点温度超过该处绝缘水平所能允许的长期平均温度时会破坏绝缘或导致寿命损失。因此,变压器负载能力研究的实质是分析变压器在热点温度不超过温度限值且不影响正常使用寿命的情况下所能承载的最大负荷及可持续时间的问题。当变电站出现“N-1”事故时,如果变压器有较高的负载能力,不仅可以使变压器在一定过载范围内安全稳定地运行,还可以给调度留出时间裕度。电力系统是一个庞大且复杂的系统,各个电力设备通过变压器紧密相连,大型的主变压器一旦发生故障,将对电力网络的运行产生深刻影响,并造成巨大的经济损失,若故障不能及时排除,严重时甚至会导致整个电力系统的崩溃。现代变压器特别是在其超铭牌额定容量运行时,需要预测内部的温度情况,确定热点温度,以便能够及时、准确地捕捉到引发事故的先兆现象,保证供电的稳定性和可靠性,使变压器在各种负载情况下具有正常的工作寿命,避免因过热而引发的事故。目前,油浸式变压器常用的热电类比模型,是基于传热学和电路原理建立的3节点等效热路模型,但是此热电类比模型未考虑环境温度的直接变化,而是通过各部分温升在一定时间内的平均值来间接衡量环境温度的变化,以及未考虑到变压器的内部温度变化对变压器油参数的影响,因而计算得到的变压器状态信息的准确度较低。
技术实现思路
本专利技术的目的在于提供一种基于改进的动态热模型的变压器状态确定方法,提高计算准确度和实用性。为达此目的,本专利技术采用以下技术方案:一种基于改进的动态热模型的变压器状态确定方法,包括步骤:获取环境温度、负载率以及冷却器状态;将所述环境温度、负载率以及冷却器状态作为输入,热点温度、顶层油温、散热器温度、底层油温作为输出,根据动态热模型计算获得模型参数;所述动态热模型的模型表达式为:其中,Pall表示分散的铜耗和铁耗的整体热源;θ1'表示热点温度值;θ2'表示顶层油温;θ3'表示散热器温度;θ4'表示底层油温;θamb实际的环境温度;C1表示铁芯、绕组和部分绝缘油的热容组成的集总热容;C2、C3和C4分别表示顶层油温升节点、散热器温度节点和底层油温升节点对环境温度的集总热容。可选的,还包括步骤:利用遗传算法优化得到所述模型参数。可选的,所述遗传算法通过选择、交叉和变异三个算子来跟踪最优的结果。可选的,所述通过选择算子来跟踪最优的结果,包括:计算出种群中所有个体的适应度之和;计算每个个体相对适应度的大小,这个数值即为考量该个体能否作为父代的概率,用轮盘赌策略来记录各个个体被选中的次数:将当前种群中适应度最低的个体替换为适应度最高的个体。可选的,所述通过交叉算子来跟踪最优的结果,包括:在选择了下一代的双亲后,以预设的交叉概率Pc选择两个个体进行交叉,通过交换两个个体的部分基因而得到两个新的个体。可选的,所述通过变异算子来跟踪最优的结果,包括:采用均匀变异,以概率Pm选择个体进行变异,随机的选取个体的基因位,并将其反转。可选的,还包括步骤:利用所述动态热模型进行负载能力评估。可选的,所述变压器为油浸式变压器。与现有技术相比,本专利技术的有益效果为:不同于现有热模型通过各部分温升在一定时间内的平均值来间接衡量环境温度的变化,本专利技术实施例提供的改进的动态热模型考虑到了环境温度的直接变化以及变压器内部温度变化对变压器油参数的影响,更能反映实际物理状况,因此所获得的变压器状态信息的准确度更高,更具实用性。附图说明为了更清楚地说明本专利技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。图1为本专利技术实施例提供的变压器动态热模型示意图;图2为本专利技术实施例提供的遗传算法的框架示意图。具体实施方式为使得本专利技术的专利技术目的、特征、优点能够更加的明显和易懂,下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本专利技术一部分实施例,而非全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本专利技术保护的范围。油浸式电力变压器在电力系统中应用广泛,其发热行为十分复杂。变压器的热量主要来自于铁芯和绕组等,运行时产生的损耗转变为热能,并造成各部分的温度差异,产生热传递过程。变压器的热量是通过传导、对流、辐射这三种基本方式传递出来的。一般来讲,在铁芯与绕组等固体发热体内,热量是经传导从内部传递至外部的;在油与固体接触的表面,热量通过油的对流从接触表面传递至油中,然后以对流的方式传递到油箱内壁;再经过传导从油箱内壁传至外壁;最后,热量从外壁表面经过对流与辐射散发至空气介质中。当发热大于散热时,变压器各部位温度持续上升,达到热平衡后,各部分温升保持不变。本专利技术实施例主要考虑到环境温度的直接变化以及新型散热器的影响,更能反映实际物理状况,基于此提供一种具有良好计算准确度和实用性的动态热模型,以达到提高计变压器状态信息的计算准确度的目的。具体的,本专利技术实施例提供了一种基于改进的动态热模型的变压器物理状况确定方法,包括步骤:获取环境温度、负载率以及冷却器状态;将环境温度、负载率以及冷却器状态作为输入,热点温度、顶层油温、散热器温度、底层油温作为输出,根据改进的动态热模型计算获得模型参数。上述步骤中,改进的动态热模型,其模型示意图如图1所示,其模型表达式为:其中,Pall表示分散的铜耗和铁耗的整体热源;θ1'表示热点温度值;θ2'表示顶层油温;θ3'表示散热器温度;θ4'表示底层油温;θamb实际的环境温度;C1表示铁芯、绕组和部分绝缘油的热容组成的集总热容;C2、C3和C4分别表示顶层油温升节点、散热器温度节点和底层油温升节点对环境温度的集总热容。为提高计算结果的精确度,本专利技术实施例还包括步骤:利用遗传算法优化得到上述模型参数。遗传算法(GeneticAlgorithm,GA)是用计算机来模拟生物“优胜劣汰,适者生存”的遗传和进化过程的一种搜索和优化算法,1975年由美国的Holland教授首次提出。遗传算法的框架简述为图2所示。遗传算法主要通过三个算子来跟踪最优的结果:选择、交叉本文档来自技高网
...

【技术保护点】
1.一种基于改进的动态热模型的变压器状态确定方法,其特征在于,包括步骤:/n获取环境温度、负载率以及冷却器状态;/n将所述环境温度、负载率以及冷却器状态作为输入,热点温度、顶层油温、散热器温度、底层油温作为输出,根据动态热模型计算获得模型参数;/n所述动态热模型的模型表达式为:/n

【技术特征摘要】
1.一种基于改进的动态热模型的变压器状态确定方法,其特征在于,包括步骤:
获取环境温度、负载率以及冷却器状态;
将所述环境温度、负载率以及冷却器状态作为输入,热点温度、顶层油温、散热器温度、底层油温作为输出,根据动态热模型计算获得模型参数;
所述动态热模型的模型表达式为:



其中,Pall表示分散的铜耗和铁耗的整体热源;θ1'表示热点温度值;θ2'表示顶层油温;θ3'表示散热器温度;θ4'表示底层油温;θamb实际的环境温度;
C1表示铁芯、绕组和部分绝缘油的热容组成的集总热容;C2、C3和C4分别表示顶层油温升节点、散热器温度节点和底层油温升节点对环境温度的集总热容。


2.根据权利要求1所述的基于改进的动态热模型的变压器状态确定方法,其特征在于,还包括步骤:利用遗传算法优化得到所述模型参数。


3.根据权利要求2所述的基于改进的动态热模型的变压器状态确定方法,其特征在于,所述遗传算法通过选择、交叉和变异三个算子来跟踪最优的结果。


4.根据权利要求3所述的基于改进的动态热模型的变压器状态确定方法,其特征在...

【专利技术属性】
技术研发人员:李应光孙德兴李春梁国芳
申请(专利权)人:广东电网有限责任公司东莞供电局广东电网有限责任公司
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1