【技术实现步骤摘要】
非最小相位系统的闭环频域辨识方法、系统及计算机可读存储介质
本专利技术涉及控制器领域,尤其涉及一种非最小相位系统的闭环频域辨识方法、系统及计算机可读存储介质。
技术介绍
非最小相位系统是指其对象传递函数,在复平面的右半侧存在零点、极点或者具有时间延迟过程的被控对象。这种具有非最小相位对象的系统广泛存在于化学工业反应过程控制器、电力电子变换器、自动水下航行控制器等。在众多类型中,具有右半复平面零点及含有时滞环节的非最小相位对象最为典型。当被控对象同时具有以上特性时,对于整体系统的整定与控制是具有相当大的挑战,因此,能够精确辨识出目标对象模型显得尤为重要。想要实现对目标系统有良好的控制效果,必然离不开对被控对象的系统辨识。由于无法得知系统中内部结构,相当于是一个黑箱子,只能通过在系统运行过程中的输入输出信号采集,采用合适的系统辨识方法去获得相应的对象模型,目前已存在的传统辨识方法主要是用FOPDT模型和SOPDT模型去辨识目标对象模型,利用频域方法分析数据,采用包含微分环节的对象模型进行对系统辨识;使用特殊的过程 ...
【技术保护点】
1.一种非最小相位系统的闭环频域辨识方法,其特征在于,包括以下步骤:/n对过程输出信号y(t)和过程输入信号u(t)进行拉普拉斯变换,以得到过程输出信号y(t)的拉普拉斯变换表达式U(s)和过程输入信号u(t)的拉普拉斯变换表达式Y(s);/n基于所述拉普拉斯变换表达式U(s)和拉普拉斯变换表达式Y(s)计算得到传递函数表达式G(s);/n基于迭代公式和传递函数表达式G(s)计算临界频率ω
【技术特征摘要】
1.一种非最小相位系统的闭环频域辨识方法,其特征在于,包括以下步骤:
对过程输出信号y(t)和过程输入信号u(t)进行拉普拉斯变换,以得到过程输出信号y(t)的拉普拉斯变换表达式U(s)和过程输入信号u(t)的拉普拉斯变换表达式Y(s);
基于所述拉普拉斯变换表达式U(s)和拉普拉斯变换表达式Y(s)计算得到传递函数表达式G(s);
基于迭代公式和传递函数表达式G(s)计算临界频率ωc,其中临界频率ωc对应的相角为-π;
根据临界频率ωc,在(0,ωc)中获取非均匀分布的M个重要频率点;
将M个重要频率点代入传递函数表达式G(s)以获取实际频率响应G(jωi);
基于二阶带非最小相位的模型及实际频率响应G(jωi)拟合求解,得到滞后系数L。
2.如权利要求1所述的闭环频域辨识方法,其特征在于,
对过程输出信号y(t)和过程输入信号u(t)进行拉普拉斯变换,以得到过程输出信号y(t)的拉普拉斯变换表达式U(s)和过程输入信号u(t)的拉普拉斯变换表达式Y(s)的步骤包括:对过程输出信号y(t)和过程输入信号u(t)进行拉普拉斯变换,得到公式(1):
将信号曲线f(t)根据公式(2)和公式(3)拆分成瞬态部分Δf(t)和稳态部分fs(t),
Δf(t)=f(t)-fs(t)(2)
fs(t)=f(∞)·1(t)(3)
其中1(t)为单位阶跃函数;
基于公式(2)变换后,信号曲线f(t)根据公式(4)表示为:
f(t)=Δf(t)+fs(t)(4)
其中稳态部分fs(t)为阶跃函数,根据公式(5)表示为:
瞬态部分Δf(t)根据公式(6)表示为:
对公式(4)两边进行拉普拉斯变换,合并公式(5)和公式(6),得到公式(7):
当时刻t=Tf时,公式(7)变换为公式(8):
根据公式(8),得到过程输出信号y(t)和过程输入信号u(t)的拉普拉斯变换表达式U(s)和拉普拉斯变换表达式Y(s)分别为公式(9)和公式(10):
3.如权利要求2所述的闭环频域辨识方法,其特征在于,
基于所述拉普拉斯变换表达式U(s)和拉普拉斯变换表达式Y(s)计算得到传递函数表达式G(s)的步骤包括:
根据公式(9)和公式(10)得到传递函数表达式(11):
对公式(11)做代换s=jω得到公式(12):
对公式(12)中积分部分,将其拆分成N个长度为Δti的小区间,表示公式(13):
4.如权利要求3所述的闭环频域辨识方法,其特征在于,
基于迭代公式和传递函数表达式G(s)计算临界频率ωc,其中临界频率ωc对应的相角为-π的步骤包括:
根据迭代公式(14)计算临界频率ωc:
...
【专利技术属性】
技术研发人员:王亚刚,徐闯,
申请(专利权)人:上海小聪科技有限公司,
类型:发明
国别省市:上海;31
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。