当前位置: 首页 > 专利查询>中北大学专利>正文

一种实现高分辨率量子传感的脉冲整形算法制造技术

技术编号:26510862 阅读:39 留言:0更新日期:2020-11-27 15:39
本发明专利技术涉及量子检测的微波脉冲领域,具体涉及一种实现高分辨率量子传感的脉冲整形算法,可应用于实现电子自旋的高光谱分辨、高频率分辨率交流磁场检测以及特定核磁共振信号的检测,本发明专利技术利用NV色心对磁信号和微波信号变化的高敏感度,通过算法改变脉冲电压幅值,能够突破现有信号发生器的自身硬件最高时间分辨率的限制,在高速量子操控中,实现更精确的量子相位翻转及控制。该方法实现简单,提升谱信噪比的同时还可以增强其应用于量子传感器的响应灵敏度,特别适用于需要多个π脉冲量子动态解耦技术以及高保真度量子调控领域当中。

【技术实现步骤摘要】
一种实现高分辨率量子传感的脉冲整形算法
本专利技术涉及量子检测的微波脉冲领域,具体涉及一种实现高分辨率量子传感的脉冲整形算法。
技术介绍
近年来,脉冲整形应用于量子调控和量子传感的动态解耦光谱学、核自旋的纳米光谱等新兴领域,具有提高信号灵敏度的作用;最简单的序列由一系列的周期性方波脉冲组成,可以在非常宽的频率范围内激发自旋,但不具备选择性激发的能力,故常采用脉冲整形,应用于高分辨率量子传感,令重复时间为τ,对于众多的脉冲数N,序列的光谱响应类似于窄带滤波器的频谱响应,其带宽为(1/Nτ),中心频率为1/(2τ),能抑制与重复时间相对应的频率以外的所有频率上的噪声,若调整τ使其在特定频率下与信号共振,其频率为Fac≈1/2τ,在提高噪声抑制作用的同时,可以提高信号的灵敏度。当使用多个控制脉冲时,滤波器带宽会变窄,因此重复时间τ必须精确设置为信号频率Fac≈1/2τ,但对于任意信号发生器硬件,τ只能以采样率对应的时间t的增量进行调整,这在实验过程中会限制频率的分辨率;具体地说,当检测到具有频率Fac的信号时,最小频率增量由下式给出:在我们的实验过程中,用于控制自旋量子位和超导的任意波形发生器具有典型的2.5GS/s的采样率,对应于时间分辨率为ts=0.4ns,在高频下操作时,这种固定的时间分辨率无法满足实验需求,由于电子瓶颈的限制,如果直接在频域内产生短脉冲信号,将会受到带宽的限制而带来许多技术问题,从而提高大量成本;虽然存在采样率较高的脉冲发生器,但价格昂贵且基本只能勉强达到足够的时间分辨率,硬件的时间采样率是量子调控实验的一个严重限制。
技术实现思路
为解决上述技术问题,本专利技术提供一种实现高分辨率量子传感的脉冲整形算法,具体步骤如下:S1:以列序为主的数组数据使用前,对所有行从小到大进行编号,同时对其编号另起一列存入数组中;S2:以列序为主的数组的行数编号完成后,将该行编号与时间分辨率相乘的结果作为时间变量;S3:在转换为行数的过程中,当需计算的时间不为时间分辨率整数倍时,对行数以四舍五入为原则进行处理;S4:在转换后所对应的行数处输入的幅值是以转换前的时间所计算而得;S5:使用的高斯脉冲为其中τ为单个高斯脉冲中的左右幅值降至的时间长度,t0为单个高斯脉冲的中心对称轴,Δt为时间分辨率的增量;进一步地,t0=c*τ,其中系数c可根据实验所需条件调整单个周期的高斯脉冲长度;脉冲有效宽度为其单个完整脉冲的半高全宽,令单次脉冲时长为tpw,半高全宽为tFWHM,则tpw=2*t0,通过绘制低浓度样品状态的金刚石NV色心的Rabi频率曲线来测试改良后脉冲的效果,具体方法如下:a.首先调试系统,设置激光强度为15毫瓦,设置某一型号任意波形发生器的微波电压幅值为1.5v,基频设置为2.73GHz,使用的微波功率放大器增益为20dBm,将任意波形发生器设置为IQ调制模式,采样率设置为任意波形发生器的最大值2.5Gs/s,采用低浓度金刚石,进行实验;b.设置同步系统的TTL信号的时序,每一周期初始化激光时长为50us,关断时间为6us,初始化激光的上升沿信号为Readout信号,序列周期为400个脉冲周期,通过改变幅值生成的高时间分辨率高斯脉冲脉宽从0.2ns步进到80ns,将制作好的序列加载至任意波形发生器的一个通道并执行运行,信号发生器将微波脉冲信号发送至射频功率放大器,微波脉冲信号经射频功率放大器放大后通过共振天线施加到低浓度的金刚石NV色心上;c.接着进行Rabi振荡实验,使用数据采集卡采集光电探测器输出端数据;d.通过编写算法,求解各周期微波频率下的荧光强度值,对于任一周期脉冲数求和为将每一脉冲周期的数据段首部去掉6个无用的上升沿数据点,即为保证信噪比,再求均值得出结果为这个周期微波频率下的荧光强度值;e.处理后的全部脉冲周期的荧光强度数据绘图即为Rabi振荡谱;f.重复步骤b至步骤e,比较普通高斯脉冲和高分辨率高斯脉冲测得的Rabi谱数据。一种实现高分辨率量子传感的脉冲整形算法,适用于垂直分辨率高的任意波形发生器,可使用于任意编程环境中,脉冲幅值数据存储采用以列序为主的数组存储方式,按照行号从小到大的顺序,依次存储每一时刻的数据,当以列序为主的数组中无所选择的脉冲频率数据,将行值为1的列中的存储数据替换为新数据。与现有技术相比,本专利技术取得的有益效果,通过特定的算法改变电压幅值,并结合脉冲整形优化技术可以使时间采样率超出硬件限制,能够实现更好的优化脉冲之间延迟处的自旋演化。附图说明图1微波脉冲调制示意图图2原脉冲与幅值修改后脉冲的形状示意图图3Rabi振荡实验流程图图4原脉冲与幅值修改后脉冲应用于Rabi振荡实验对比图具体实施方案下面结合附图对本专利技术做进一步的说明,以令本领域技术人员参照说明书文字能够实施。一种实现高分辨率量子传感的脉冲整形算法,具体包括以下步骤:S1:在以列序为主的数组数据使用前,对所有行从小到大进行编号,同时对其编号另起一列存入数组中;S2:列序为主的数组的行数编号完成后,将该行编号与时间分辨率相乘的结果作为时间变量;S3:在转换为行数的过程中,当需计算的时间不为时间分辨率整数倍时,对行数以四舍五入为原则进行处理;动态解耦光谱学是基于这种有精确定时脉冲重复时间τ的量子比特控制的周期性脉冲调制的领域,如图1;S4:在转换后所对应的行数处输入的幅值是以转换前的时间所计算而得;S5:使用的高斯脉冲为其中τ为单个高斯脉冲中的左右幅值降至的时间长度,t0为单个高斯脉冲的中心对称轴,Δt为时间分辨率的增量;t0=c*τ,其中系数c可根据实验所需条件调整单个周期的高斯脉冲长度;脉冲有效宽度为其单个完整脉冲的半高全宽,令单次脉冲时长为tpw,半高全宽为tFWHM,则如图2,用整形脉冲调制微波信号,将时间分辨率限制为脉冲发生器硬件采样时间ts的倍数,其中,正方体和圆形的轮廓显示原始和时移脉冲;一种实现高分辨率量子传感的脉冲整形算法应用到脉冲ODMR光谱及Rabi振荡的检测中,如图3为进行相关量子调控实验的流程图,其具体步骤如下:a.首先调试量子调控系统,使用功率为15毫瓦的激光器,选用某一型号任意波形发生器,设置任意波形发生器的微波电压幅值为1.5v,设置为IQ调制模式,采样率设置为任意波形发生器的最大值2.5Gs/s,将任意波形发生器的基频设置为所记录共振峰对应频率。使用的微波功率放大器增益为20dBm;b.设置同步系统的TTL信号的时序,每周期初始化激光时长为50us,关断时间为6us,初始化激光的上升沿信号为Readout信号,序列周期为400个脉冲周期,通过改变幅值生成的高时间分辨率高斯脉冲脉宽从0.2ns步进到80ns。将制作好的序列加载至任意波形发生器的一个通道并执行运行,信号发生器将微波脉冲信号发送至射频功率放大器,微波脉冲信号经射本文档来自技高网
...

【技术保护点】
1.一种实现高分辨率量子传感的脉冲整形算法,其特征在于,包括以下步骤:/nS1:以列序为主的数组的数据使用前,对所述数组的所有行从小到大进行编号,同时将其编号另起一列存入数组中;/nS2:当所述数组的行数编号完成后,将所述行编号与时间分辨率相乘的结果作为时间变量;/nS3:当需计算的时间不为时间分辨率整数倍时,我们在转换为行数时以四舍五入为原则进行处理;/nS4:在转换后所对应的行数处输入的幅值是以转换前的时间所计算而得;/nS5:使用的高斯脉冲为

【技术特征摘要】
1.一种实现高分辨率量子传感的脉冲整形算法,其特征在于,包括以下步骤:
S1:以列序为主的数组的数据使用前,对所述数组的所有行从小到大进行编号,同时将其编号另起一列存入数组中;
S2:当所述数组的行数编号完成后,将所述行编号与时间分辨率相乘的结果作为时间变量;
S3:当需计算的时间不为时间分辨率整数倍时,我们在转换为行数时以四舍五入为原则进行处理;
S4:在转换后所对应的行数处输入的幅值是以转换前的时间所计算而得;
S5:使用的高斯脉冲为其中τ为单个高斯脉冲中的左右幅值降至的时间长度,t0为单个高斯脉冲的中心对称轴,Δt为时间分辨率的增量;t0=c*τ,其中系数c可根据实验所需条件调整单个周期的高斯脉冲长度。


2.根据权利要求1所述的一种实现高分辨率量子传感的脉冲整形算法,其中脉冲有效宽度为其单个完整脉冲的半高全宽,令单次脉冲时长为tpw,半高全宽为tFWHM,则tpw=2*t0,


3.根据权利要求1所述的一种实现高分辨率量子传感的脉冲整形算法,其特征在于,绘制金刚石NV色心Rabi频率曲线的具体方法如下:
a.首先调试量子调控系统,我们使用低浓度的金刚石NV色心,使用功率为15毫瓦的激光,选用某一型号任意波形发生器,设置任意波形发生器的微波电压幅值为1.5v,设置为IQ调制模式,采样率设置为任...

【专利技术属性】
技术研发人员:刘俊唐军李中豪郭浩刘文耀温焕飞马宗敏周彦汝崔凌霄张健潘鼎文
申请(专利权)人:中北大学
类型:发明
国别省市:山西;14

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1