磁共振成像系统和方法技术方案

技术编号:2632858 阅读:184 留言:0更新日期:2012-04-11 18:40
本发明专利技术涉及一种用于磁共振成像的系统和方法。为了获得高分辨率成像,提出了一种磁共振成像系统和方法,其中使用第一共振频率的磁共振信号用于k-空间的中心部分,使用第二共振频率的磁共振信号用于k-空间的周边部分。在本发明专利技术的优选实施例中,对于k-空间的中心部分使用非质子磁共振信号,而对于k-空间的周边部分使用质子磁共振信号。因此,重建的磁共振图像显示了与非质子原子核相关的对比度和由质子控制的高分辨率。因而,本发明专利技术特别提供了一种使用有限时间对非质子磁共振信号进行采集的解决方案。

【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及一种磁共振(MR)成像系统和方法。使用1H原子核(质子)的MR成像技术是现有技术中公知的。在过去几年中,人们已经注意到了使用源自除了质子之外的原子核例如13C或31P的磁共振信号的MR成像技术。非质子原子核的MR成像中的一个重要问题是,用于成像这种原子核的较低信噪比(SNR)。该低SNR的原因是,在其他因素中,与质子相比,这种原子核具有低得多的自然丰度(natural abundance)、它们的更低的旋磁比和浓缩物质的低浓度。为了克服这个问题和获得足够的SNR,可以通过多种方法增强原子核的极化。这些方法中的一个是使这些原子核超极化。然而,应用到该磁场中的第一个射频(RF)脉冲将显著减少超极化程度,从而限制了MR信号读出(回波)的总数量。该限制数量的MR回波信号又导致所得到磁共振成像的受限的空间分辨率。在过去,已经应用了单脉冲技术来克服这些困难。另一个方面是,在该MR信号的采集期间,超极化的磁化强度回迅速衰减。这种衰减将引起点传播函数(point-spread function)的加宽,该函数是该信号衰减的傅里叶变换。这进一步限制了使用非质子原子核成像的分辨率。对于非质子原子核,其旋磁比小于质子,例如其对质子的比率对于19F和3He等于70%,而对于13C和129Xe则分别等于25%。这意味着对于给定梯度强度,k-空间遍历的效率减少。因而,对于给定分辨率和给定梯度振幅,其重复时间必须是13C和129Xe的四倍长。对于典型的梯度系统参数,对于质子,用于以足够分辨率如2mm分辨率对整体目标成像的重复时间,总计等于2.5到3ms。对于其他原子核例如13C,该重复时间将是10到15ms。这意味着即使极化MR信号的较慢衰减也会被该MR信号固有的较慢读出所抵消。作为该事实的结果,仅有有限的时间采集该超极化核素(hyperpolarized species)的MR图像,并且重复时间相对较长,图像的分辨率被固有限制。举例来说,在400mm的视场(FOV)中,2mm的标定分辨率需要200个相位编码步骤,即对于k-空间的单个平面需要2到3秒读出。为了实现对于目标物的足够覆盖,必须对k-空间中的多个切片或平面进行采样,典型地为40-100个。这就导致了100-300秒的读出时间。在这种情况下,图像会非常模糊以致于根本不能达到2mm的分辨率。以更高的分辨率例如0.5-1.0mm的分辨率成像时,考虑到对于单个切片所需的300-500个相位编码步骤和7-10ms的标定重复时间,问题会更加严重。根据现有技术可以得知,组合采集技术提供了对于含水核素(aqueous species)获得足够的时间分辨率和/或空间分辨率的一些优点。这种采集技术在US 6400151中公开。其中使用不同序列的高频脉冲和磁场梯度脉冲来从水质子中采集不同组MR信号。这些水质子MR信号被组合以构成k-空间,从而对于k-空间的不同频带使用不同组。然而,所给出的这种方法没有提供一种对于使用有限时间来采集非质子MR信号的解决方案。本专利技术的目的是提供一种,能够根据除了水之外的核素对于原子核进行高分辨率成像。根据本专利技术,该目的是通过一种MR成像系统来实现,该系统包括采集模块,用于使用第一共振频率对k-空间的中心部分采集第一磁共振信号和使用第二共振频率对k-空间的周边部分采集第二磁共振信号,数据模块,用于将对应于该第一磁共振信号的第一k-空间数据和对应于该第二磁共振信号的第二k-空间数据组合以构成完整的k-空间,和图像模块,用于通过将k-空间变换到图像空间而生成图像。因而术语“完整的k-空间”将被理解为具有对采样点的足够覆盖从而能够以目标分辨率重建图像的k-空间。本专利技术的目的还通过一种MR成像方法来实现,该方法包括步骤使用第一共振频率对k-空间的中心部分采集第一磁共振信号,使用第二共振频率对k-空间的周边部分采集第二磁共振信号,将对应于该第一磁共振信号的第一k-空间数据和对应于该第二磁共振信号的第二k-空间数据组合以构成完整的k-空间,和通过将k-空间变换到图像空间而生成图像。根据本专利技术,关于k-空间中心部分和关于k-空间周边部分的信号是分别采集的。从而已经考虑到,k-空间的这两部分提供不同的信息,这些信息有利地可以在MR成像过程中使用。因而利用了这一事实,即首先由k-空间的中心来确定MR图像的SNR和对比度特性,而k-空间的周边提供关于该MR图像的良好分辨率的信息。为了提供增强的MR图像,本专利技术建议以不同的MR共振频率工作。因此本专利技术使用的MR设备适应于在两个或更多不同的MR共振频率工作。基于在从属权利要求中限定的以下实施例,进一步来详细说明本专利技术的这些和其他方面。在本专利技术的优选实施例中,这包括多核成像,例如使用质子和非质子原子核,例如1H和13C。从而,优选地使用超极化非质子核素,并且因而该用于采集第一磁共振信号的模块适应于例如超极化13C。也可以使用其他核素例如未超极化的非质子核素。例如可以进行31P成像而不进行额外的极化。在本专利技术的实施例中,对于k-空间的中心部分采集该非质子原子核的磁共振信号,特别是对于该k-空间的中心。对于k-空间的周边部分采集磁共振信号,特别是来自H2O中的1H。这就是说,k-空间的中心部分被来自具有非质子原子核的核素的数据覆盖,而k-空间的外围部分被质子数据覆盖。该质子数据可以在非质子数据采集之前或之后采集。在本专利技术的一个优选实施例中,将除了质子之外的MR信号产生原子核施加到该物体上。如果该被扫描物体对施加包含具有其他原子核的化学物质的对比剂敏感,那么有利地可以首先通过例如执行快速水扫描来采集全部相关的质子数据。然后根据来自该k-空间的中心部分的非质子MR信号和来自k-空间的周边部分的质子MR信号重建该磁共振图像。因此,该重建MR图像显示了由非质子原子核确定的对比度分布,该非质子原子核的分辨率被水质子信号增强。也就是说,该图像包含高分辨率的非质子对比度分布。优选地,在高分辨率需要关于k-空间的周边部分的质子MR数据,例如来自H2O中的1H。从而获得了范围在1-2mm的优选分辨率。在低分辨率,典型地为4-5mm,需要关于其他原子核如13C或者关于其他环境中的1H的MR数据。由于k-空间的深度与具有给定旋磁比的分辨率成反比,所以对于在一个方向上的中心部分,该k-空间的中心部分和周边部分之间的比例因子的典型值为20-25%。对于k-空间的中心部分的信号采集仅需要较短的采集时间。因而,该方法可以提供一种对于使用有限时间采集非质子MR信号的解决方案。因为该较短的采集时间,该非质子原子核的激励的快速衰减既不会限制该重建组合图像的SNR,也不会限制其有效的点传播函数。该重建的MR图像显示了与该非质子原子核相关的对比度和由质子控制的良好分辨率。利用根据本专利技术的多核成像的组合采集技术,可以通过组合非质子和质子MR信号来扩展非质子k-空间,从而克服成像超极化非质子磁化的固有限制。一般地,本专利技术可以用于通过MR方法检测的任何自旋承载物质。自由基承载电子的自旋,其具有与质子相比非常高的灵敏度。这意味着,利用电子自旋共振(ESR)可以检测到更低的浓度。为了实现利用ESR在有损样本例如人体中的高分辨率成像,必须克服与电子自旋信号的线宽本文档来自技高网...

【技术保护点】
一种磁共振成像系统(1),包括:-采集模块(2),用于使用第一共振频率对k-空间的中心部分采集第一磁共振信号,和使用第二共振频率对k-空间的周边部分采集第二磁共振信号,-数据模块(3),用于将对应于该第一磁共振信号的第一k-空间数据和对应于该第二磁共振信号的第二k-空间数据组合以构成完整的k-空间,和-图像模块(3),用于通过将k-空间变换到图像空间而生成图像。

【技术特征摘要】
【国外来华专利技术】...

【专利技术属性】
技术研发人员:JS范登布林克
申请(专利权)人:皇家飞利浦电子股份有限公司
类型:发明
国别省市:NL[荷兰]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利