当前位置: 首页 > 专利查询>中南大学专利>正文

一种用于原地浸出矿床的非均质性评价方法、装置及介质制造方法及图纸

技术编号:26067778 阅读:7 留言:0更新日期:2020-10-28 16:40
本发明专利技术公开了一种用于原地浸出矿床的非均质性评价方法、装置及介质,其中方法以矿层块段模型为硬数据,首先计算每个封闭空间各属性类别所在空间区域的最大外轮廓;然后用多点样板来扫描最大外轮廓得到局部空间信息熵,并按最大外轮廓、封闭空间、待评价区域这样从局部到整体,依次对空间信息熵进行融合,从而获得整个待评价区域的联合空间信息熵;最后,根据建立的信息熵与非均质性的映射关系,来评价采区的非均质性。本发明专利技术可以有效反映采区的非均质性,从而可实现对原地浸出矿床非均质性的有效自动化评价,且评价结果可用于指导地浸区生产钻孔布置及井场结构的优化,具有重大的实践意义。

【技术实现步骤摘要】
一种用于原地浸出矿床的非均质性评价方法、装置及介质
本专利技术涉及原地浸出矿床储层评价
,特别地,涉及一种用于原地浸出矿床的非均质性评价方法、装置及介质。
技术介绍
原地浸出过程中矿化非均质性和渗透特性是决定能否实施地浸开采的关键技术,两者缺一不可。与此同时,影响地浸开采技术是否经济合理的因素有矿体品位、矿物成分、产状、埋深以及储量等。长期以来关于储层评价技术的研究多集中于油气藏领域,而与砂岩铀矿储层评价技术相关的研究少之甚少。因此,在砂岩铀矿山井场设计工作中,人们通常基于经验,考虑地下水流方向,按照统一的井型、井距等进行井场平面布置,并根据单个注入井或抽出井所揭露的岩性和品位信息,完成垂向的井构布置。这无疑将导致采区建设和生产成本增加、设备材料浪费、生产效率和效益降低等诸多问题。因此,为了保证砂岩型铀矿床原地浸出开采设计方案的合理性、最优性,我们亟需在三维地质块段模型的基础上,建立一套能够自动化定量评价溶浸开采矿床储层非均质性的方法和指标,来指导采区井场结构的优化,达到降低建设投资、生产成本和提高目标矿物的回收率的目的。
技术实现思路
本专利技术提供一种用于原地浸出矿床的非均质性评价方法,通过计算采区的信息熵,然后根据信息熵与非均质性的映射关系,来有效评价原地浸出矿床储层各属性空间展布的非均质性,评价结果可用于指导地浸区生产钻孔布置及井场结构的优化。为实现上述技术目的,本专利技术采用如下技术方案:一种用于原地浸出矿床的非均质性评价方法,包括以下步骤:步骤S1,根据钻孔的开口坐标,将非均质性待评价区域划分为若干封闭空间;步骤S2,获取非均质性待评价区域对应的地质块段模型,从中提取所有点云数据,并判断每个点云所属的封闭空间;步骤S3,针对每个封闭空间:均按照其中点云的属性类别,在封闭空间内生成与属性类别对应的最大外轮廓;步骤S4,定义多点样板的尺寸;针对每个封闭空间的每个最大外轮廓:均使用所有的多点样板扫描最大外轮廓内的点云,获得所有多点样板的概率分布,进而计算最大外轮廓的空间信息熵;步骤S5,针对每个封闭空间:根据其所有的最大外轮廓计算封闭空间的空间信息熵;步骤S6,聚合所有封闭空间的空间信息熵,得到能够评价整个待评价区域的联合空间信息熵;步骤S7,根据步骤S5和步骤S6得到的空间信息熵,以及空间信息熵与非均质性的映射关系,评价非均质性待评价区域内每个封闭空间以及整个待评价区域的非均质性。进一步的,步骤S2中,判断每个点云所属的封闭空间的方法为:设点云坐标为A(x,y),封闭空间为多边形P{p1,p2,…,pK},将点云与多边形的每条边进行叉乘,即:{Ap1×Ap2,Ap2×Ap3,…,ApK-1×ApK,ApK×Ap1},如果计算结果为0或者符号相同,则表示点云A(x,y)在多边形内或在多边形上;反之,表示点云A(x,y)在多边形外;其中,P表示多边形,pi表示多边形的第i个顶点,i=1,2,…,K,多边形的所有顶点按照顺时针或逆时针方向排列依次为p1,p2,…,pK,Api为点云A到顶点pi的矢量。进一步的,步骤S3中,按照其中点云的属性类别,生成与属性类别对应的最大外轮廓,具体过程为:设当前封闭空间内的所有点云集合为Ω,不同属性类别的点云集合为Ωm,m=1,2,…,M;采用AlphaShapes算法计算点云集合Ωm的最大外轮廓为Cm;其中,计算点云集合Ωm中的每个点云A(x,y)是否在最大外轮廓Cm内的方法为:将点云A(x,y)与最大外轮廓Cm{s1,s2,…,sN}的顶点进行叉乘,即:{As1×As2,As2×As3,…,AsN-1×AsN,AsN×As1},如果计算结果为0或者符号相同,则表示点云A(x,y)在最大外轮廓Cm的内部或在最大外轮廓Cm的面上;反之,表示点云A(x,y)在最大外轮廓Cm的外部;式中,si表示最大外轮廓Cm的第i个顶点,i=1,2,…,N,最大外轮廓Cm的所有顶点按照顺时针或逆时针方向依次排列为s1,s2,…,sN,Asi为点云A到顶点si的矢量。进一步的,步骤S4中,扫描最大外轮廓内的点云,是指点云集合Ω分布在最大外轮廓内的点云;定义多点样板的网格尺寸为l*w*h,由于每个点云的属性类别包括M种,故多点样板共有Num=Ml*w*h种不同配置,定义不同配置的多点样板表示为Temk,k=1,2,…,Num;使用第k个多点样板Temk扫描最大外轮廓Cm内的点云时,若多点样板在最大外轮廓Cm内,计为1次有效模拟;当多点样板Temk扫描完最大外轮廓Cm的所有点云后,统计多点样板Temk对应的有效模拟数量Numk;当统计完所有多点样板的有效模拟数量后,计算所有多点样板的概率分布pk:最大外轮廓Cm的空间信息熵hm的计算方法为:式中,μ是一个正常数。进一步的,所述步骤S5中,封闭空间的空间信息熵H的计算方法为:式中,hm为最大外轮廓Cm的空间信息熵;ωm为最大外轮廓Cm的权重,ω1,…,ωM∈R+,且其中,最大外轮廓Cm的权重ωm的计算方法为:式中,Pm为最大外轮廓Cm内的点云数量。进一步的,设第j个封闭空间的空间信息熵为Hj,则聚合所有封闭空间的空间信息熵的具体聚合方法为:式中,H即为聚合得到的非均质性待评价区域的空间信息熵,Wj表示第j个封闭空间的权重,J为待评价区域所包括的封闭空间数量,且式中,Ωj为第j个封闭空间内的点云数量。进一步的,空间信息熵与非均质性的映射关系为:若空间信息熵的范围为0~0.2,对应的封闭空间或者整个待评价区域为均质区;若空间信息熵的范围为0.2~0.4,对应的封闭空间或者整个待评价区域为弱非均质区;若空间信息熵的范围为0.4~0.6,对应的封闭空间或者整个待评价区域为非均质区;若空间信息熵的范围为0.6~1,对应的封闭空间或者整个待评价区域为强非均质区。进一步的,所述点云为地质块段模型中每个基础块的中心点,点云的属性类别即为基础块的属性类别,所述属性类别包括高品位和低品位2种。本专利技术还提供一种用于原地浸出矿床的非均质性评价装置,包括:封闭空间划分模块,用于:根据钻孔的开口坐标,将非均质性待评价区域划分为若干封闭空间;点云数据划分模块,用于:获取非均质性待评价区域对应的地质块段模型,从中提取所有点云数据,并判断每个点云所属的封闭空间;最大外轮廓生成模块,用于:针对每个封闭空间均按照其中点云的属性类别,生成与属性类别对应的最大外轮廓;第一局部空间信息熵计算模块,用于:定义多点样板的尺寸;针对每个封闭空间的每个最大外轮廓:均使用所有的多点样板扫描最大外轮廓内的点云,获得所有多点样板的概率分布,进而计算最大外轮廓的空间信息熵;第二局部空间信息熵计算模块,用于:针对每个封闭空间,根据其所有的最大外轮廓计算封闭空间的空间信息熵;空间信息熵本文档来自技高网...

【技术保护点】
1.一种用于原地浸出矿床的非均质性评价方法,其特征在于,包括以下步骤:/n步骤S1,根据钻孔的开口坐标,将非均质性待评价区域划分为若干封闭空间;/n步骤S2,获取非均质性待评价区域对应的地质块段模型,从中提取所有点云数据,并判断每个点云所属的封闭空间;/n步骤S3,针对每个封闭空间:均按照其中点云的属性类别,在封闭空间内生成与属性类别对应的最大外轮廓;/n步骤S4,定义多点样板的尺寸;针对每个封闭空间的每个最大外轮廓:均使用所有的多点样板扫描最大外轮廓内的点云,获得所有多点样板的概率分布,进而计算最大外轮廓的空间信息熵;/n步骤S5,针对每个封闭空间:根据其所有的最大外轮廓计算封闭空间的空间信息熵;/n步骤S6,聚合所有封闭空间的空间信息熵,得到能够评价整个待评价区域的联合空间信息熵;/n步骤S7,根据步骤S5和步骤S6得到的空间信息熵,以及空间信息熵与非均质性的映射关系,评价非均质性待评价区域内每个封闭空间以及整个待评价区域的非均质性。/n

【技术特征摘要】
1.一种用于原地浸出矿床的非均质性评价方法,其特征在于,包括以下步骤:
步骤S1,根据钻孔的开口坐标,将非均质性待评价区域划分为若干封闭空间;
步骤S2,获取非均质性待评价区域对应的地质块段模型,从中提取所有点云数据,并判断每个点云所属的封闭空间;
步骤S3,针对每个封闭空间:均按照其中点云的属性类别,在封闭空间内生成与属性类别对应的最大外轮廓;
步骤S4,定义多点样板的尺寸;针对每个封闭空间的每个最大外轮廓:均使用所有的多点样板扫描最大外轮廓内的点云,获得所有多点样板的概率分布,进而计算最大外轮廓的空间信息熵;
步骤S5,针对每个封闭空间:根据其所有的最大外轮廓计算封闭空间的空间信息熵;
步骤S6,聚合所有封闭空间的空间信息熵,得到能够评价整个待评价区域的联合空间信息熵;
步骤S7,根据步骤S5和步骤S6得到的空间信息熵,以及空间信息熵与非均质性的映射关系,评价非均质性待评价区域内每个封闭空间以及整个待评价区域的非均质性。


2.根据权利要求1所述的方法,其特征在于,步骤S2中,判断每个点云所属的封闭空间的方法为:
设点云坐标为A(x,y),封闭空间为多边形P{p1,p2,…,pK},将点云与多边形的每条边进行叉乘,即:{Ap1×Ap2,Ap2×Ap3,…,ApK-1×ApK,ApK×Ap1},如果计算结果为0或者符号相同,则表示点云A(x,y)在多边形内或在多边形上;反之,表示点云A(x,y)在多边形外;
其中,P表示多边形,pi表示多边形的第i个顶点,i=1,2,…,K,多边形的所有顶点按照顺时针或逆时针方向排列依次为p1,p2,…,pK,Api为点云A到顶点pi的矢量。


3.根据权利要求1所述的方法,其特征在于,步骤S3中,按照其中点云的属性类别,生成与属性类别对应的最大外轮廓,具体过程为:
设当前封闭空间内的所有点云集合为Ω,不同属性类别的点云集合为Ωm,m=1,2,…,M;采用AlphaShapes算法计算点云集合Ωm的最大外轮廓为Cm;
其中,计算点云集合Ωm中的每个点云A(x,y)是否在最大外轮廓Cm内的方法为:
将点云A(x,y)与最大外轮廓Cm{s1,s2,…,sN}的顶点进行叉乘,即:{As1×As2,As2×As3,…,AsN-1×AsN,AsN×As1},如果计算结果为0或者符号相同,则表示点云A(x,y)在最大外轮廓Cm的内部或在最大外轮廓Cm的面上;反之,表示点云A(x,y)在最大外轮廓Cm的外部;
式中,si表示最大外轮廓Cm的第i个顶点,i=1,2,…,N,最大外轮廓Cm的所有顶点按照顺时针或逆时针方向依次排列为s1,s2,…,sN,Asi为点云A到顶点si的矢量。


4.根据权利要求1所述的方法,其特征在于,步骤S4中,扫描最大外轮廓内的点云,是指点云集合Ω分布在最大外轮廓内的点云;
定义多点样板的网格尺寸为l*w*h,由于每个点云的属性类别包括M种,故多点样板共有Num=Ml*w*h种不同配置,定义不同配置的多点样板表示为Temk,k=1,2,…,Num;
使用第k个多点样板Temk扫描最大外轮廓Cm内的点云时,若多点样板在最大外轮廓Cm内...

【专利技术属性】
技术研发人员:贾明涛贺康
申请(专利权)人:中南大学
类型:发明
国别省市:湖南;43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1