当前位置: 首页 > 专利查询>浙江大学专利>正文

一种高维随机场条件下的新型复合材料结构优化设计方法技术

技术编号:26066302 阅读:51 留言:0更新日期:2020-10-28 16:39
本发明专利技术公开了一种高维随机场条件下的新型复合材料结构优化设计方法。该方法首先根据新型复合材料结构制备工艺与服役环境的复杂性,建立考虑其材料属性与载荷空间相关不确定性的高维随机场模型,进而,根据高刚度轻量化设计需求建立高维随机场影响下新型复合材料结构的优化设计模型;然后,将随机等几何分析方法与随机多项式展开增强Dagum核克里金代理模型相结合,高效准确地计算出高维随机场影响下新型复合材料结构随机响应的统计特征值;最后,利用粒子群算法快速获取最优的新型复合材料结构设计参数。本发明专利技术综合考虑材料属性及载荷的高维随机性,符合工程实际;优化中采用随机等几何分析与代理模型相结合计算结构的随机响应,高效且准确。

【技术实现步骤摘要】
一种高维随机场条件下的新型复合材料结构优化设计方法
本专利技术涉及工程领域,尤其涉及一种高维随机场条件下的新型复合材料结构优化设计方法。
技术介绍
复合材料具有轻质量、高刚度、高强度等优势,近年来在工程中的应用日益普遍。例如,硬岩掘进机刀盘等具有高强度、高刚度性能需求的结构,就十分适合采用复合材料来制造。由于复合材料的制备工艺复杂,其材料属性具有明显的随机性。而新型复合材料结构的服役环境往往也十分复杂恶劣。以硬岩掘进机刀盘为例,在服役过程中,刀盘与岩石碎块、砂砾等不规则坚硬物体发生频繁碰撞,其所受载荷大小及方向存在天然的随机性。这些不确定性使得新型复合材料结构的位移、应力也必然存在随机性。因此,在新型复合材料结构响应分析及优化设计中,需充分考虑其材料和载荷的随机不确定性。结构随机响应分析主要有实验法和仿真法。前者需进行大量实验来模拟随机载荷等不确定性,由于无法在结构全部表面布置传感器,难以准确釆集结构的随机响应信息,难以保证实验结果的精度;且当结构设计参数发生变化时,需制造相应的试件进行实验,成本高昂。后者借助三维建模及数值计算软件建立结构的仿真模型,进行结构随机响应的分析计算,可高效精确且经济地获得随机场载荷作用下的结构响应,更适用于不确定性结构的优化设计。现有的有限元分析方法进行CAD模型与CAE模型的转换时,网格单元离散的操作会遗失CAD模型的几何信息,网格单元只能近似表示而无法准确表示复杂的几何形状(如尖角、复杂曲面等),使得用于分析的CAE模型存在几何离散误差。复合材料结构的材料属性受基底材料属性、填充物材料属性、填充方式等多种因素影响,随机变量数量非常多,属于高维随机问题。现有的嵌入式随机分析在处理高维随机问题时,随机响应的显式表达式十分复杂,随机刚度矩阵的维数非常高,计算效率十分低下。
技术实现思路
本专利技术的目的在于针对现有技术的不足,提供一种高维随机场条件下的新型复合材料结构优化设计方法。相比于传统的有限元分析,等几何分析技术直接应用CAD模型作为分析用的CAE模型,从原理上消除了三维CAD模型转为CAE分析模型时产生的几何离散误差。另外,本专利技术提出的方法采用非嵌入式随机分析,应用代理模型求解新型复合材料结构的随机响应,无需求解随机响应的显式表达式,而是通过较少次数的等几何分析所得结果来训练代理模型,进而得到大规模样本的随机结构响应,避免了高维随机变量带来的矩阵维数过高的问题,大大降低了分析难度,计算效率比嵌入式随机分析高很多。该方法首先根据复合材料结构的制造情况与服役环境建立其材料属性与载荷的高维随机场模型,在此基础上,根据结构的高刚度轻量化设计需求建立优化设计模型,并采用粒子群算法进行求解。求解过程中,采用随机等几何分析方法计算随机场材料属性及载荷影响下的结构随机响应,寻找到最优的结构设计参数组合,从而实现了高维随机环境下的新型复合材料结构的高刚度轻量化设计。本专利技术提出的新型复合材料结构分析及优化设计方法综合考虑了材料属性及载荷的高维随机性,将随机等几何分析方法与随机多项式展开增强Dagum核克里金代理模型相结合计算新型复合材料结构的随机响应,能高效准确地获得新型复合材料结构的随机位移和应力。为实现上述目的,本专利技术采用的技术方案是:一种高维随机场条件下的新型复合材料结构优化设计方法,该方法包括以下步骤:1)新型复合材料结构参数化,确定结构设计参数及其取值范围。2)采用随机场描述考虑空间相关不确定性的新型复合材料结构的材料属性及载荷:其中,x为新型复合材料结构中面上的点坐标,θ为随机场的样本集合,E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)分别为新型复合材料结构的杨氏模量、泊松比、载荷、载荷方向角α(空间直角坐标系中载荷与z轴的夹角)和载荷方向角β(空间直角坐标系中载荷与x轴的夹角),分别为表征存在空间相关不确定性的新型复合材料结构的杨氏模量、泊松比和载荷的对数正态随机场,分别为表征存在空间相关不确定性的新型复合材料结构所受载荷方向角α和载荷方向角β的高斯随机场。3)根据新型复合材料结构的高刚度轻量化设计需求,给出结构优化设计目标函数和约束函数的表达式,建立新型复合材料结构的高刚度轻量化设计模型:s.t.μS(k,r)+jσS(k,r)≤[S];μU(k,r)+jσU(k,r)≤[U];kmin≤k≤kmax其中,k为新型复合材料结构的设计向量,包括多个结构设计参数;r={E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)}为随机场向量;f(k)为表征新型复合材料结构质量的目标函数;μS(k,r)为结构随机应力的平均值,σS(k,r)为结构随机应力的标准差;[S]为许用应力;μU(k,r)为结构随机位移的平均值,σU(k,r)为结构随机位移的标准差;[U]为许用位移;j为界限参数,一般取3或6,表示对结构响应值的要求严格程度;kmin,kmax为结构设计向量取值的下限和上限。4)采用粒子群算法计算得到新型复合材料结构高刚度轻量化设计模型的最优解,具体包括以下子步骤:4.1)初始化粒子群,随机初始化各粒子。4.2)将随机等几何分析方法与基于随机多项式展开增强Dagum核克里金代理模型相结合,计算各粒子所对应的新型复合材料结构随机响应统计特征值,具体步骤包括:4.2.1)根据当前粒子的结构设计参数值,建立基于NURBS函数或T样条函数的新型复合材料结构CAD模型;4.2.2)应用Karhunen-Loève展开得到结构材料属性及载荷随机场的离散型表达式,将每个随机场离散成为M个标准高斯随机变量的函数之和;4.2.3)对全部高斯随机变量进行抽样设计,确定训练样本数量,获取结构材料属性及载荷随机场的小规模样本(一般为一百到两百次);4.2.4)对每一个样本,获得当前样本的材料属性及载荷值,设置边界条件,应用等几何分析方法计算当前样本的结构响应;4.2.5)重复子步骤4.2.4),直至遍历所有训练样本;4.2.6)根据获得的所有训练样本的结构响应值,训练随机多项式展开增强Dagum核克里金代理模型;4.2.7)对结构材料属性及载荷随机场进行大规模样本(一般为一百万次)的采样,通过训练好的随机多项式展开增强Dagum核克里金代理模型获得每个样本的结构响应;4.2.8)根据随机多项式展开增强Dagum核克里金代理模型所得大规模样本的结构响应计算当前粒子对应的新型复合材料结构随机位移及随机应力的平均值和标准差。4.3)以结构质量为适应度计算各粒子的适应度值,判断各粒子所对应的结构随机位移及随机应力的统计特征值是否满足应力及位移约束条件,不满足则对该粒子的适应度增加罚函数,使其适应度变为极值。4.4)根据适应度更新最优值,更新粒子的速度和位置。4.5)判断是否满足终止条件,不满足则重复步骤4.2)至步骤4.4),满足本文档来自技高网
...

【技术保护点】
1.一种高维随机场条件下的新型复合材料结构优化设计方法,其特征在于,该方法包括以下步骤:/n1)新型复合材料结构参数化,确定结构设计参数及其取值范围。/n2)采用随机场描述考虑空间相关不确定性的新型复合材料结构的材料属性及载荷:/n

【技术特征摘要】
1.一种高维随机场条件下的新型复合材料结构优化设计方法,其特征在于,该方法包括以下步骤:
1)新型复合材料结构参数化,确定结构设计参数及其取值范围。
2)采用随机场描述考虑空间相关不确定性的新型复合材料结构的材料属性及载荷:















其中,x为新型复合材料结构中面上的点坐标,θ为随机场的样本集合,E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)分别为新型复合材料结构的杨氏模量、泊松比、载荷、载荷方向角α(空间直角坐标系中载荷与z轴的夹角)和载荷方向角β(空间直角坐标系中载荷与x轴的夹角),分别为表征存在空间相关不确定性的新型复合材料结构的杨氏模量、泊松比和载荷的对数正态随机场,分别为表征存在空间相关不确定性的新型复合材料结构所受载荷方向角α和载荷方向角β的高斯随机场。
3)根据新型复合材料结构的高刚度轻量化设计需求,给出结构优化设计目标函数和约束函数的表达式,建立新型复合材料结构的高刚度轻量化设计模型:



s.t.μS(k,r)+jσS(k,r)≤[S];
μU(k,r)+jσU(k,r)≤[U];
kmin≤k≤kmax
其中,k为新型复合材料结构的设计向量,包括多个结构设计参数;r={E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)}为随机场向量;f(k)为表征新型复合材料结构质量的目标函数;μS(k,r)为结构随机应力的平均值,σS(k,r)为结构随机应力的标准差;[S]为许用应力;μU(k,r)为结构随机位移的平均值,σU(k,r)为结构随机位移的标准差;[U]为许用位移;j为界限参数,表示对结构响应值的要求严格程度;kmin,kmax分别为结构设计向量取值的下限和上限。
4)采用粒子群算法计算得到新型复合材料结构高刚度轻量化设计模型的最优解,具体包括以下子步骤:
4.1)初始化粒子群,随机初始化各粒子。
4.2)将随机等几何分析方法与基于随机多项式展开增强Dagum核克里金代理模型相结合,计算各粒子所对应的新型复合材料结构随机响应统计特征值,具体步骤包括:
4.2.1)根据当前粒子的结构设计参数值,建立基于NURBS函数或T样条函数的新型复合材料结构CAD模型;
4.2.2)应用Karhunen-Loève展开得到结构材料属性及载荷随机场的离散型表达式,将每个随机场离...

【专利技术属性】
技术研发人员:程锦杨明龙刘振宇胡伟飞谭建荣
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1