一种纳米尺度孔材料、电极及储能设备制造技术

技术编号:25993781 阅读:26 留言:0更新日期:2020-10-20 19:02
本发明专利技术公开了一种纳米尺度孔材料,包括材料本体,所述材料本体的至少一个侧面上设有纳米尺度孔。本发明专利技术还公开了一种电极,包括基材,所述基材的两侧侧面中,至少一侧侧面上设有如上所述的纳米尺度孔材料。本发明专利技术还公开了一种储能设备,包括电子绝缘且可通过离子的隔膜,所述隔膜的两侧分别设有电极,所述电极采用如上所述的电极。本发明专利技术的纳米尺度孔材料,通过在材料本体的侧面上设置纳米尺度孔,能够提高比表面积,当将该纳米尺度孔材料用在电极及储能设备上时,纳米尺度孔内能够传输电解液,从而增大电极的比表面积,使电极的内部也能够参与充放电,提高储能设备的比功率以及极大地提高多孔电极的利用率。

【技术实现步骤摘要】
一种纳米尺度孔材料、电极及储能设备
本专利技术涉及一种纳米尺度孔材料,具体的为一种纳米尺度孔材料和采用该纳米尺度孔材料制成的电极和储能设备。
技术介绍
现有的锂离子电池包括正电极、负电极和隔膜,正电极和负电极之间设有电解液。根据锂离子电池的充放电原理可知:锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。当对电池进行充电时,电池的正电极上有锂离子生成,生成的锂离子经过电解液运动到负电极。而作为负电极的碳呈层状结构,它有很多微孔,达到负电极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时,嵌在负电极碳层中的锂离子脱出,又运动回正电极。回正电极的锂离子越多,放电容量越高。锂电池放电需要注意几点:第一,放电电流不能过大,过大的电流导致电池内部发热,有可能会造成永久性的损害。第二,绝对不能过放电!锂电池内部存储电能是靠电化学一种可逆的化学变化实现的,过度的放电会导致这种化学变化有不可逆的反应发生,因此锂电池最怕过放电,一旦放电电压低于2.7V,将可能导致电池报废。在锂离子电池充放电过程中,正电极和负电极仅有一定深度的孔表面与电解液接触而产生锂离子的嵌入和脱嵌,正电极和负电极的材料不能完全参与锂离子的嵌入和脱嵌,这也是导致现有的锂离子电池充放电电流不大的原因,不但限制了锂离子电池的充放电容量,而且也限制了电池的充放电功率。
技术实现思路
有鉴于此,本专利技术的目的在于提供一种纳米尺度孔材料、电极及储能设备,能够有效提高比表面积。为达到上述目的,本专利技术提供如下技术方案:一种纳米尺度的孔材料,包括材料本体(1),所述材料本体(1)的至少一个侧面上规则分布的纳米尺度孔(2)。进一步,所述纳米尺度孔(2)为设置在所述材料本体(1)侧面上的盲孔。进一步,垂直于所述纳米尺度孔(2)轴线的任意两个平面在该所述纳米尺度孔(2)上截得的两个径向截面中,距离所述纳米尺度孔(2)孔底较近的所述径向截面的面积小于等于距离所述纳米尺度孔(2)孔底较远的所述径向截面的面积。进一步,所述纳米尺度孔(2)为贯穿所述材料本体(1)的通孔。进一步,垂直于所述纳米尺度孔(2)轴线的任意平面在该所述纳米尺度孔(2)上截得的两个径向截面的为相似图形。进一步,所述径向截面为圆形、椭圆形、三角形、正方形、长方形、菱形或正多边形。进一步,所述纳米尺度孔(2)呈阵列设置。进一步,所述纳米尺度孔(2)呈渐变阵列设置。进一步,所述纳米尺度孔(2)以孔径、孔间距或孔形状为基准渐变阵列设置。进一步,所述纳米尺度孔(2)的孔径大于等于1nm。进一步,所述纳米尺度孔(2)的孔径小于等于1um。进一步,所述纳米尺度孔(2)的孔径小于等于100nm。进一步,所述纳米尺度孔(2)的孔径小于等于50nm。进一步,所述纳米尺度孔(2)的孔径大于等于2nm。进一步,所述纳米尺度孔(2)之间的孔间距满足:L≤kδ其中,L为纳米尺度孔的孔间距;k为系数,且k≥1;δ为扩散控制层厚度。进一步,所述纳米尺度孔(2)之间的孔间距满足:L≤10δ。进一步,所述纳米尺度孔(2)之间的孔间距满足:L≤5δ。进一步,所述纳米尺度孔(2)之间的孔间距满足:L≤2δ。进一步,所述纳米尺度孔(2)之间的孔间距满足:L≤δ。进一步,所述纳米尺度孔(2)阵列设置在所述材料本体(1)的侧面上。进一步,所述扩散控制层厚度为:其中,δ为扩散控制层厚度;D为扩散系数;t为时间。进一步,所述材料本体(1)的厚度大于等于1nm。进一步,所述材料本体(1)采用金属材料或非金属材料制成。进一步,所述金属材料包括但不限于金属锂或金属铜;所述非金属材料包括但不限于碳、石墨或石墨烯。本专利技术还提出了一种电极,包括基材(3),所述基材(3)的两侧侧面中,至少一侧侧面上设有如权利要求1-24任一项所述的纳米尺度孔材料(4)。进一步,所述基材(3)采用铜箔、铝箔、钢箔或网状铜箔制成。本专利技术还提出了一种储能设备,包括电子绝缘且可通过离子的隔膜(5),所述隔膜(5)的两侧分别设有电极,所述电极采用如权利要求25或26所述的电极。进一步,所述离子隔膜为电池隔膜,设置在所述电池隔膜两侧的所述电极分别为正电极和负电极。进一步,所述隔膜为电容隔膜,设置在所述电容隔膜两侧的所述电极均为电容电极。进一步,分别设置在所述隔膜两侧的所述电容电极采用相同的电容电极材料制成;或,设置在所述隔膜两侧的所述电容电极分别采用不同的电容电极材料制成。进一步,位于所述隔膜两侧的两个所述电极中,其中一个所述电极采用电池正极材料或电极负极材料制成,另一个所述电极采用电容电极材料制成。本专利技术的有益效果在于:本专利技术的纳米尺度孔材料,通过在材料本体的侧面上设置纳米尺度孔,当将该纳米尺度孔材料用在电极及储能设备上时,纳米尺度孔内能够传输电解液,从而增大电极的比表面积,使电极的内部也能够参与充放电,提高储能设备的比功率以及极大地提高多孔电极的利用率;当将该纳米尺度孔用在生物医疗领域时,该纳米尺度孔可作为过滤孔,从而筛选不同大小的分子;当然,本专利技术的纳米尺度孔还具有多种其他应用领域,不再累述。附图说明为了使本专利技术的目的、技术方案和有益效果更加清楚,本专利技术提供如下附图进行说明:图1为本专利技术纳米尺度孔材料实施例1的结构示意图,具体的为纳米尺度孔材料的第1种结构示意图;图2为纳米尺度孔材料的第2种结构示意图;图3为纳米尺度孔材料的第3种结构示意图;图4为纳米尺度孔材料的第4种结构示意图;图5为纳米尺度孔材料的第5种结构示意图;图6为纳米尺度孔材料的第6种结构示意图;图7为纳米尺度孔材料的第7种结构示意图;图8为纳米尺度孔材料的第8种结构示意图;图9为纳米尺度孔材料的第9种结构示意图;图10为本专利技术储能设备的结构示意图;图11为电极的第一种结构示意图;图12为电极的第二种结构示意图;图13为电极的第三种结构示意图。具体实施方式下面结合附图和具体实施例对本专利技术作进一步说明,以使本领域的技术人员可以更好的理解本专利技术并能予以实施,但所举实施例不作为对本专利技术的限定。实施例1如图1所示,为本专利技术纳米尺度孔材料实施例1的结构示意图。本实施例的纳米尺度孔材料,包括材料本体1,材料本体1的至少一个侧面上设有纳米尺度孔2。具体的,本实施例的纳米尺度孔2为设置在材料本体1侧面上的盲孔。进一步的,垂直于纳米尺度孔2轴线的任意两个平面在该纳米尺度孔2上截得的两个径向截面中,距离纳米尺度孔2孔底较近的径向截面的面积小于等于距离纳米尺度孔2孔底较远的径向截面的面积。如图1至图5所示,多种形状的纳米尺度孔2均可满足距离孔底较近的径向截面本文档来自技高网...

【技术保护点】
1.一种纳米尺度的孔材料,其特征在于:包括材料本体(1),所述材料本体(1)的至少一个侧面上规则分布的纳米尺度孔(2)。/n

【技术特征摘要】
1.一种纳米尺度的孔材料,其特征在于:包括材料本体(1),所述材料本体(1)的至少一个侧面上规则分布的纳米尺度孔(2)。


2.根据权利要求1所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)为设置在所述材料本体(1)侧面上的盲孔。


3.根据权利要求2所述的纳米尺度孔材料,其特征在于:垂直于所述纳米尺度孔(2)轴线的任意两个平面在该所述纳米尺度孔(2)上截得的两个径向截面中,距离所述纳米尺度孔(2)孔底较近的所述径向截面的面积小于等于距离所述纳米尺度孔(2)孔底较远的所述径向截面的面积。


4.根据权利要求1所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)为贯穿所述材料本体(1)的通孔。


5.根据权利要求1-4任一项所述的纳米尺度孔材料,其特征在于:垂直于所述纳米尺度孔(2)轴线的任意平面在该所述纳米尺度孔(2)上截得的两个径向截面的为相似图形。


6.根据权利要求5所述的纳米尺度孔材料,其特征在于:所述径向截面为圆形、椭圆形、三角形、正方形、长方形、菱形或正多边形。


7.根据权利要求1所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)呈阵列设置。


8.根据权利要求1所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)呈渐变阵列设置。


9.根据权利要求8所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)以孔径、孔间距或孔形状为基准渐变阵列设置。


10.根据权利要求1所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)的孔径大于等于1nm。


11.根据权利要求10所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)的孔径小于等于1um。


12.根据权利要求11所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)的孔径小于等于100nm。


13.根据权利要求12所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)的孔径小于等于50nm。


14.根据权利要求13所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)的孔径大于等于2nm。


15.根据权利要求1所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)之间的孔间距满足:
L≤kδ
其中,L为纳米尺度孔的孔间距;k为系数,且k≥1;δ为扩散控制层厚度。


16.根据权利要求15所述的纳米尺度孔材料,其特征在于:所述纳米尺度孔(2)之间的孔间...

【专利技术属性】
技术研发人员:辛民昌李长明吴超辛程勋
申请(专利权)人:青岛九环新越新能源科技股份有限公司
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1