当前位置: 首页 > 专利查询>广州大学专利>正文

一种基于MCM-41分子筛固化离子液体的锂电池固体电解质及其制备方法技术

技术编号:25841051 阅读:51 留言:0更新日期:2020-10-02 14:20
本发明专利技术公开了一种基于MCM‑41分子筛固化离子液体的锂电池固体电解质及其制备方法,该固体电解质由MCM‑41分子筛、离子液体和锂盐组成。其制备方法包括以下步骤:1)锂盐、离子液体和MCM‑41分子筛的干燥预处理;2)锂盐和离子液体的混合,得到锂盐‑离子液体混合物;3)MCM‑41分子筛和锂盐‑离子液体混合物的混合,焙烧。本发明专利技术的固体电解质以MCM‑41分子筛为基体,将离子液体和锂盐填充固载在分子筛的孔道中,不仅可以大大抑制锂枝晶的形成,而且还有利于锂离子的迁移,具有较高的电导率和能量密度,且还可以提高固体电解质的界面稳定性。

【技术实现步骤摘要】
一种基于MCM-41分子筛固化离子液体的锂电池固体电解质及其制备方法
本专利技术属于锂电池
,具体涉及一种基于MCM-41分子筛固化离子液体的锂电池固体电解质及其制备方法。
技术介绍
随着科技的进步和人口的增长,化石能源的消耗越来越大,储量迅速减少,人们开始加大力度开发新型的、清洁的替代能源。电能是一种经济、实用、清洁、容易控制和转换的能源形态,备受关注。目前,主要是通过电池来储备电能,而在众多种类的电池中,锂离子电池的表现最好,其具有造价低廉、制造技术成熟、循环性能好、能量密度高等优点,因此可充电锂离子电池被广泛应用在电子产品、运输车辆、航空航天、储能设备等领域。商品化的锂离子电池中使用的电解质大多是液体电解质,而锂离子电池在反复充放电过程中容易发生副反应而形成锂枝晶,锂枝晶易刺破隔膜而导致电解液泄漏,最终引发安全问题。离子液体是由正离子和负离子组成的在室温下呈现液态的熔盐体系,具有独特的物理化学性质和特有的功能,且大部分的室温离子液体都具有非挥发性、高热稳定性、疏水性、宽的电化学窗口、良好的导电性和导热性等特点。室温离子液体常被用于制备离子液体电解液,其具有高的电导率,且可以提高电池的安全性能,但依然无法避免锂枝晶的问题。通过固体电解质替代液体电解质,可以在很大程度上缓解锂枝晶的问题,但传统的固体电解质(如陶瓷、聚合物或是陶瓷/聚合物等)普遍存在常温下离子电导率偏低的问题,难以普及应用。而将离子液体固载在有机聚合物基体或无机基体上,可以得到新型的固体电解质,是近几年来的研究热点,但目前开发出的这类固体电解质普遍存在明显缺陷,例如:CN103545549A公开了一种锂二次电池离子凝胶电解质,其电导率可以达到10-3S/cm,但该电解质是凝胶态的,硬度强度不够高,且采用的是有机修饰的TiO2无机基体,高温稳定性差。CN106058312A公开了一种固态化离子液体电解质,以环氧醚基修饰的二氧化硅作为基体,修饰后的材料内部有C-O-C官能团,有利于与锂离子结合,可以促进锂离子的迁移,但该有机修饰的二氧化硅骨架中的官能团对体系的电导率影响很大,所以得到的固体电解质的化学稳定性较差。
技术实现思路
本专利技术的目的在于提供一种基于MCM-41分子筛固化离子液体的锂电池固体电解质及其制备方法。本专利技术所采取的技术方案是:一种基于MCM-41分子筛固化离子液体的锂电池固体电解质,由MCM-41分子筛、离子液体和锂盐组成。优选的,所述离子液体和锂盐的总质量为MCM-41分子筛质量的1~3.5倍。优选的,所述离子液体、锂盐的质量比为(4~9):1。优选的,所述离子液体为1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丙基-3-甲基咪唑双三氟甲磺酰亚胺盐、1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐、N-甲基,丙基哌啶双三氟甲磺酰亚胺盐、N-甲基,丁基哌啶双三氟甲磺酰亚胺盐、N-甲基,丙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基,丁基吡咯烷双三氟甲磺酰亚胺盐中的至少一种。优选的,所述锂盐为双三氟甲烷磺酰亚胺锂(LiN(SO2CF3)2)、三氟甲磺酸锂(LiCF3SO3)、四氟硼酸锂(LiBF4)中的至少一种。上述基于MCM-41分子筛固化离子液体的锂电池固体电解质的制备方法,包括以下步骤:1)分别对锂盐、离子液体和MCM-41分子筛进行干燥;2)在保护气氛下,将锂盐和离子液体混合均匀,得到锂盐-离子液体混合物(LI-IL);3)在保护气氛下,将MCM-41分子筛和锂盐-离子液体混合物混合均匀,再进行焙烧,得到基于MCM-41分子筛固化离子液体的锂电池固体电解质。优选的,步骤1)所述干燥在90~110℃下进行,干燥时间为20~30h。优选的,步骤2)和3)所述的保护气氛为氩气气氛。优选的,步骤3)所述焙烧在140~160℃下进行,焙烧时间为8~12h。优选的,步骤3)中升温至焙烧温度的升温速率为1℃/min。本专利技术的有益效果是:本专利技术的固体电解质以MCM-41分子筛为基体,将离子液体和锂盐填充固载在分子筛的孔道中,不仅可以大大抑制锂枝晶的形成,而且还有利于锂离子的迁移,具有较高的电导率和能量密度,且还可以提高固体电解质的界面稳定性。1)本专利技术的固体电解质中的MCM-41分子筛内部具有规则孔道,比表面积,孔体积大,可以吸收容纳大量的锂离子,由其制备得到的固体电解质具有较高的能量密度和离子电导率(常温下的离子电导率可达1.08×10-3S/cm);2)本专利技术的固体电解质属于无机体系,和有机体系相比,不仅高温稳定性好,而且制造成本更低、生产工艺更加简单;3)本专利技术的固体电解质中添加有离子液体,使固体电解质表面拥有一定的湿润度,大大降低了固体电解质的界面阻力,制造电池时有利于固体电解质与正负极的接触,提高了固体电解质的界面稳定性。附图说明图1为实施例1的固体电解质的EIS交流阻抗分析图。图2为实施例2的固体电解质的EIS交流阻抗分析图。图3为实施例3的固体电解质的EIS交流阻抗分析图。图4为实施例4的固体电解质的EIS交流阻抗分析图。图5为实施例5的固体电解质的EIS交流阻抗分析图。图6为实施例6的固体电解质的EIS交流阻抗分析图。图7为对比例1的固体电解质的EIS交流阻抗分析图。图8为不同Li-IL负载量的锂电池固体电解质的SEM图。具体实施方式下面结合具体实施例对本专利技术作进一步的解释和说明。实施例1~6和对比例1:一种锂电池固体电解质,其制备方法包括以下步骤:1)将双三氟甲烷磺酰亚胺锂、1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐和MCM-41分子筛分别置于真空干燥箱中,100℃下干燥24h;2)在氩气气氛下,将双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐混合均匀,得到锂盐-离子液体混合物(简写为LI-IL,其中双三氟甲烷磺酰亚胺锂所占的质量百分比为10%~20%);3)在氩气气氛下,将MCM-41分子筛和锂盐-离子液体混合物混合均匀(MCM-41分子筛、锂盐-离子液体混合物的质量比为1:(0~3.5)),再以1℃/min的速率升温至150℃,焙烧10h,得到锂电池固体电解质1~7,再用压片机进行压片(压力为2MPa),得到薄片状固体电解质。采用美国安捷伦的精密阻抗分析仪对制备得到的锂电池固体电解质1~7进行交流阻抗测试,测试温度为25℃,频率范围为1~107Hz,得到的EIS图如图1~7所示。不同Li-IL负载量的锂电池固体电解质的SEM图如图8所示(MCM-41分子筛、Li-IL的质量比依次为1:1、1:2、1:2.5和1:3.5,对应图中的a~d)。实施例1~6和对比例1的锂电池固体电解质的原料配方和性能测试结果如下表所示:表1实施例1~6和对比本文档来自技高网
...

【技术保护点】
1.一种基于MCM-41分子筛固化离子液体的锂电池固体电解质,其特征在于:由MCM-41分子筛、离子液体和锂盐组成。/n

【技术特征摘要】
1.一种基于MCM-41分子筛固化离子液体的锂电池固体电解质,其特征在于:由MCM-41分子筛、离子液体和锂盐组成。


2.根据权利要求1所述的基于MCM-41分子筛固化离子液体的锂电池固体电解质,其特征在于:所述离子液体和锂盐的总质量为MCM-41分子筛质量的1~3.5倍。


3.根据权利要求1或2所述的基于MCM-41分子筛固化离子液体的锂电池固体电解质,其特征在于:所述离子液体、锂盐的质量比为(4~9):1。


4.根据权利要求1或2所述的基于MCM-41分子筛固化离子液体的锂电池固体电解质,其特征在于:所述离子液体为1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丙基-3-甲基咪唑双三氟甲磺酰亚胺盐、1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐、N-甲基,丙基哌啶双三氟甲磺酰亚胺盐、N-甲基,丁基哌啶双三氟甲磺酰亚胺盐、N-甲基,丙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基,丁基吡咯烷双三氟甲磺酰亚胺盐中的至少一种。


5.根据权利要求1或2所述的基于MCM-41分子筛固化离子液体的锂电池固体电解质,...

【专利技术属性】
技术研发人员:贺鹤鸣吕松年
申请(专利权)人:广州大学
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1