一种全断面隧道开挖渗流-应力耦合模型试验装置及方法制造方法及图纸

技术编号:25753864 阅读:26 留言:0更新日期:2020-09-25 21:03
本发明专利技术提供了一种全断面隧道开挖渗流‑应力耦合模型试验装置及方法,在压力室内利用模具制作围岩模型,在围岩模型外侧空隙和中心的孔洞中分别嵌入扁形橡胶水囊和柱形橡胶水囊,橡胶水囊均通过水管分别连接液压加载器,用于模拟围岩压力和隧道开挖过程中的应力释放过程。橡胶水囊与围岩模型之间均放置土工布,并连接液压加载器,用于施加孔隙水压力边界。围岩模型内预埋孔隙水压力传感器,用于监测孔隙水压力变化。采用数字图像采集系统无接触测量岩体模型的全场应变与变形。本发明专利技术的有益效果是:用于研究饱和低渗透性地层隧道开挖时,测量应力释放的过程中围岩应力‑应变的特性和渗流‑应力耦合特性,为隧道的开挖提供试验支持。

【技术实现步骤摘要】
一种全断面隧道开挖渗流-应力耦合模型试验装置及方法
本专利技术涉及隧道与地下空间工程领域,尤其涉及一种全断面隧道开挖渗流-应力耦合模型试验装置及方法。
技术介绍
饱和低渗透性地层(如泥岩)是隧道工程中常见的地质情况,在这种地层中开挖隧道的施工涉及到复杂的渗流-应力耦合问题:在隧道开挖的过程中,随着掌子面推进,围岩的应力逐步释放。在围岩的应力重新分布的过程中,孔隙水压力也会发生较大变化并随着时间演化,围岩应力与孔隙水压力的相互耦合作用对隧道的变形和稳定性有较大影响,是目前隧道工程的重要研究方向。用相似材料进行模型试验是研究隧道开挖施工过程中受力、变形问题的常见方式。常规的模型试验方法是先采相用似材料填筑地层模型,然后加载按照相似原理确定的荷载,最后移除隧道轮廓范围内的相似材料并测量应力和变形。但是这种试验方法难以模拟隧道推进过程中应力逐步释放的过程,而且无法考虑隧道开挖过程中的渗流-应力耦合机制。
技术实现思路
为了解决上述问题,本专利技术提供了一种全断面隧道开挖渗流-应力耦合模型试验装置及方法,用于研究饱和低渗透性地层隧道开挖时,应力释放的过程中围岩应力-应变的特性和渗流-应力耦合特性,以便在隧道开挖时使用。包括:压力室、围岩模型、扁形橡胶水囊、柱形橡胶水囊、土工布、孔隙水压力传感器、水管组件、液压传感器组件、液压加载器组件和控制器组件和数字图像采集系统;所述水管组件包括第一水管、第二水管、第三水管和第四水管;所述液压传感器组件包括第一液压传感器、第二液压传感器、第三液压传感器和第四液压传感器;所述液压加载器组件包括第一液压加载器、第二液压加载器、第三液压加载器和第四液压加载器;所述控制器组件包括第一控制器、第二控制器、第三控制器和第四控制器;所述压力室包括钢底座、钢侧壁、透明有机玻璃顶盖和若干螺栓;所述钢侧壁的四角加厚形成立柱,在四边形成安放所述扁形水囊的空间;通过若干螺栓,钢侧壁和透明有机玻璃顶盖均固定于所述钢底座,透明有机玻璃顶盖为所述压力室的顶盖,所述钢底座和透明有机玻璃顶盖上均设置有对应的扁形的凹槽,在该凹槽中嵌入匹配的钢侧壁;每个液压伺服加载系统均有1个液压传感器、1个液压加载器和1个控制器组成,用于实现对水管内的液体压力进行伺服加卸载控制;液压传感器的输入端连接水管,液压传感器的第一输出端连接液压加载器的输入端,液压传感器的第二输出端连接控制器的一端,液压加载器的输出端连接控制器的另一端;在压力室中心处安装有围岩模型,围岩模型的中心处设置有以隧道断面轮廓按相似比缩小的孔洞,该孔洞内安装柱形橡胶水囊,压力室与围岩模型之间的间隙内安装扁形橡胶水囊,所述扁形橡胶水囊和柱形橡胶水囊均通过水管组件分别连接到液压伺服加载系统,分别用于施加所述围岩模型的外压和内压;所述围岩模型内预埋孔隙水压力传感器,所述孔隙水压力传感器用于监测试验过程中的孔隙水压力的变化;所述围岩模型与所述扁形橡胶水囊及所述柱形橡胶水囊之间均放置若干层土工布,土工布通过水管连接到液压伺服加载系统,所述土工布用于引导孔隙水流动及施加孔隙水压力;所述有机玻璃顶盖上方设置有数字图像采集系统,所述数字图像采集系统用于采集围岩模型表面的图像数据,进而用于无接触测量岩体模型的应变与变形。进一步地,所述透明有机玻璃顶盖为所述压力室的顶盖,所述钢底座为压力室的底座。进一步地,所述围岩模型为圆柱形,由与围岩相似材料制成。进一步地,还包括两个球阀,其中一个球阀的输入端连接于柱形橡胶水囊,该球阀的输出端连接另一个球阀的第一输入端,该另一个球阀的第二输入端连接土工布,该另一个球阀的输出端连接到水管的一端,水管的另一端连接到液压伺服加载系统。进一步地,所述扁形橡胶水囊及所述柱形橡胶水囊与所述压力室的接触面上均涂抹有润滑油,用于提高外压和内压施加的均匀性。进一步地,所述围岩模型与所述钢底座及所述有机玻璃顶盖的接触面上均涂抹有透明硅脂耦合剂,用于避免孔隙水沿着接触面流动及提高所述围岩模型在所述压力室顶部的可视性。进一步地,所述围岩模型与所述扁形橡胶水囊及所述柱形橡胶水囊之间均放置2层土工布。一种全断面隧道开挖渗流-应力耦合模型试验方法,采用如上述的全断面隧道开挖渗流-应力耦合模型试验装置;包括以下步骤:S1:在钢底座上利用相应的模具及与岩石相似的材料制作围岩模型,所述围岩模型的中心处设置有以隧道断面轮廓按相似比缩小的孔洞;S2:通过若干螺栓,钢侧壁和透明有机玻璃顶盖均固定于钢底座,拼装成压力室;在围岩模型外侧与压力室间的空隙和孔洞中分别嵌入扁形橡胶水囊和柱形橡胶水囊,扁形橡胶水囊和柱形橡胶水囊与压力室的接触面上分别涂抹润滑油,在围岩模型和压力室的接触面上涂抹透明硅脂耦合剂;S3:扁形橡胶水囊和柱形橡胶水囊连接水管及液压伺服加载系统;S4:液压伺服加载系统分别对扁形橡胶水囊和柱形橡胶水囊施加围岩压力和隧道孔洞内侧的压力至预定值;S5:通过液压伺服加载系统对土工布处连接的水管中施加孔隙水压力至预定值,并维持一段时间,对围岩模型进行饱和;S6:关闭连接到孔洞内壁的土工布处的管道上的球阀;S7:分级卸载柱形橡胶水囊的压力,每一级压力均维持一段时间,通过孔隙水压力传感器获取试验过程中对应不同深度的孔隙水压力的变化值,通过数字图像采集系统采集围岩模型的图像数据,所有数据均进行全程实时记录;S8:处理采集到的图像数据,得到围岩模型的应变和位移,并结合孔隙水压力的监测数据对不同应力释放率下的试验结果进行分析,以得到测量岩体模型的应变与变形。本专利技术提供的技术方案带来的有益效果是:1.通过扁形橡胶水囊和柱形橡胶水囊分别加载围岩压力和控制隧道模型的应力释放,并且通过液压伺服加载系统进行控制,可以精确地控制隧道应力释放率,与施工现场的实际情况较吻合,精确度较高。2.在围岩模型外侧和内侧设置土工布,通过水管与液压伺服加载系统相连接,既可以保证围岩模型处于饱和状态,又可以精确控制模型的外侧和内侧的孔隙水压力;3.在围岩模型和压力室的接触面上涂抹透明硅脂耦合剂,以避免孔隙水沿着接触面发生渗流。4.利用数字图像采集系统获取围岩模型表面的图像数据,可无接触测量岩体模型的应变与变形,进而无接触测量全场应变与位移,准确科学。附图说明下面将结合附图及实施例对本专利技术作进一步说明,附图中:图1是本专利技术实施例中一种全断面隧道开挖渗流-应力耦合模型试验装置的结构俯视图;图2是本专利技术实施例中一种全断面隧道开挖渗流-应力耦合模型试验装置的结构侧视剖面图;图3是本专利技术实施例中一种全断面隧道开挖渗流-应力耦合模型试验方法的流程图。附图中,各标号所代表的部件列表如下:1-钢底座;2-钢侧壁;3-透明有机玻璃顶盖;4-螺栓;5-围岩模型;6-扁形橡胶水囊;7-柱形橡胶水囊;8-土工布;9-孔隙水压力传感器;10-水管组件:10a-第一水管、10b-第二水管、本文档来自技高网...

【技术保护点】
1.一种全断面隧道开挖渗流-应力耦合模型试验装置,其特征在于:包括:压力室、围岩模型(5)、扁形橡胶水囊(6)、柱形橡胶水囊(7)、土工布(8)、孔隙水压力传感器(9)、水管组件(10)、液压传感器组件(11)、液压加载器组件(12)和控制器组件(13)和数字图像采集系统(15);/n所述水管组件(10)包括第一水管(10a)、第二水管(10b)、第三水管(10c)和第四水管(10d);/n所述液压传感器组件(11)包括第一液压传感器(11a)、第二液压传感器(11b)、第三液压传感器(11c)和第四液压传感器(11d);/n所述液压加载器组件(12)包括第一液压加载器(12a)、第二液压加载器(12b)、第三液压加载器(12c)和第四液压加载器(12d);/n所述控制器组件(13)包括第一控制器(13a)、第二控制器(13b)、第三控制器(13c)和第四控制器(13d);/n所述压力室包括钢底座(1)、钢侧壁(2)、透明有机玻璃顶盖(3)和若干螺栓(4);通过若干螺栓(4),钢侧壁(2)和透明有机玻璃顶盖(3)均固定于所述钢底座(1),所述钢底座(1)和透明有机玻璃顶盖(3)上均设置有对应的扁形的凹槽,在该凹槽中嵌入匹配的钢侧壁(2);/n每个液压伺服加载系统均有1个液压传感器、1个液压加载器和1个控制器组成,用于实现对水管内的液体压力进行伺服加卸载控制;液压传感器的输入端连接水管,液压传感器的第一输出端连接液压加载器的输入端,液压传感器的第二输出端连接控制器的一端,液压加载器的输出端连接控制器的另一端;/n在压力室中心处安装有围岩模型(5),围岩模型(5)的中心处设置有以隧道断面轮廓按相似比缩小的孔洞,该孔洞内安装柱形橡胶水囊(7),压力室与围岩模型(5)外侧间的空隙内安装扁形橡胶水囊(6),所述扁形橡胶水囊(6)和柱形橡胶水囊(7)均通过水管组件(10)分别连接到液压伺服加载系统,分别用于施加所述围岩模型的外压和内压;所述围岩模型(5)内预埋孔隙水压力传感器(9),所述孔隙水压力传感器(9)用于监测试验过程中的孔隙水压力的变化;/n所述围岩模型(5)与所述扁形橡胶水囊(6)及所述柱形橡胶水囊(7)之间均放置若干层土工布(8),土工布(8)通过水管连接到液压伺服加载系统,所述土工布(8)用于引导孔隙水流动及施加孔隙水压力;/n所述有机玻璃顶盖(3)上方设置有数字图像采集系统(15),所述数字图像采集系统(15)用于采集围岩模型(5)表面的图像数据,进而用于无接触测量岩体模型(5)的应变与变形。/n...

【技术特征摘要】
1.一种全断面隧道开挖渗流-应力耦合模型试验装置,其特征在于:包括:压力室、围岩模型(5)、扁形橡胶水囊(6)、柱形橡胶水囊(7)、土工布(8)、孔隙水压力传感器(9)、水管组件(10)、液压传感器组件(11)、液压加载器组件(12)和控制器组件(13)和数字图像采集系统(15);
所述水管组件(10)包括第一水管(10a)、第二水管(10b)、第三水管(10c)和第四水管(10d);
所述液压传感器组件(11)包括第一液压传感器(11a)、第二液压传感器(11b)、第三液压传感器(11c)和第四液压传感器(11d);
所述液压加载器组件(12)包括第一液压加载器(12a)、第二液压加载器(12b)、第三液压加载器(12c)和第四液压加载器(12d);
所述控制器组件(13)包括第一控制器(13a)、第二控制器(13b)、第三控制器(13c)和第四控制器(13d);
所述压力室包括钢底座(1)、钢侧壁(2)、透明有机玻璃顶盖(3)和若干螺栓(4);通过若干螺栓(4),钢侧壁(2)和透明有机玻璃顶盖(3)均固定于所述钢底座(1),所述钢底座(1)和透明有机玻璃顶盖(3)上均设置有对应的扁形的凹槽,在该凹槽中嵌入匹配的钢侧壁(2);
每个液压伺服加载系统均有1个液压传感器、1个液压加载器和1个控制器组成,用于实现对水管内的液体压力进行伺服加卸载控制;液压传感器的输入端连接水管,液压传感器的第一输出端连接液压加载器的输入端,液压传感器的第二输出端连接控制器的一端,液压加载器的输出端连接控制器的另一端;
在压力室中心处安装有围岩模型(5),围岩模型(5)的中心处设置有以隧道断面轮廓按相似比缩小的孔洞,该孔洞内安装柱形橡胶水囊(7),压力室与围岩模型(5)外侧间的空隙内安装扁形橡胶水囊(6),所述扁形橡胶水囊(6)和柱形橡胶水囊(7)均通过水管组件(10)分别连接到液压伺服加载系统,分别用于施加所述围岩模型的外压和内压;所述围岩模型(5)内预埋孔隙水压力传感器(9),所述孔隙水压力传感器(9)用于监测试验过程中的孔隙水压力的变化;
所述围岩模型(5)与所述扁形橡胶水囊(6)及所述柱形橡胶水囊(7)之间均放置若干层土工布(8),土工布(8)通过水管连接到液压伺服加载系统,所述土工布(8)用于引导孔隙水流动及施加孔隙水压力;
所述有机玻璃顶盖(3)上方设置有数字图像采集系统(15),所述数字图像采集系统(15)用于采集围岩模型(5)表面的图像数据,进而用于无接触测量岩体模型(5)的应变与变形。


2.如权利要求1所述的一种全断面隧道开挖渗流-应力耦合模型试验装置,其特征在于:所述透明有机玻璃顶盖(3)为所述压力室的顶盖,所述钢底座(1)为压力室的底座。


3.如权利要求1所述的一种全断面隧道开挖渗流-应力耦合模型试验装置,其特征在于:所述围岩模型(5)为圆柱形,由与围岩相似材料制成。<...

【专利技术属性】
技术研发人员:王发玲马郧龙晓东郭运冉锦绣李子优程先涛张灏张鹏王天琦赵昀程莹
申请(专利权)人:中南勘察设计院集团有限公司
类型:发明
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1