双门控雪崩光电二极管单光子探测方法技术

技术编号:2550916 阅读:195 留言:0更新日期:2012-04-11 18:40
本发明专利技术涉及保密通讯类,具体的讲是涉及一种反向电压门与探测门分离的双门控雪崩光电二极管单光子探测方法,该方法通过使用较宽的门偏压,使得门偏压前、后沿的微分信号和雪崩信号分离,即雪崩信号远离尖峰,因而在单光子探测时信号很容易被捕获,其优点是,门偏压与光子信号不重叠,雪崩信号远离门偏压前、后沿的尖峰,很容易捕获信号,对环境变化不敏感,工作稳定,成本低,对于光子到达时间有微小变化的情况下,只需扫描探测门,而无须改变APD脉冲偏压的工作频率,大大改善了工作稳定性。

【技术实现步骤摘要】

本专利技术涉及保密通讯类,具体的讲是涉及一种反向电压门与探测门分离的。
技术介绍
雪崩光电二极管(APD)是当前用于单光子探测的最有效器件。在工作时,APD两端加上反向高电压Vr,使Vr略高于雪崩点电压VB,就进入盖革工作模式,即,当有光子入射时APD就发生雪崩击穿,产生雪崩电流,从而可以检测微弱的单光子信号。针对APD暗噪声(dark noise)较大的特点,特别是用于光通信波段(1310,1550纳米)的InGaAs雪崩光电二极管,实际使用中可以采用门控模式(Gatemode),即,使反向电压Vr略低于雪崩点电压VB,仅当光子到来时,才升高电压,使Vr>VB,形成一个很窄的脉冲“门”,仅仅探测“门”内的信号。在理论上,探测到噪声的机率是随着门宽的减小而减小的,但现有方案中,反向偏压门就是探测门,探测门的减小也导致了偏压门的减小。而由于APD结电容的微分作用,门偏压的前沿(上升沿)会产生尖峰,门偏压过窄,雪崩信号就会与尖峰重合,即门脉冲和雪崩信号发生重叠,很难分离,后续电路复杂,目前通常是用比较或补偿的办法将尖峰与信号分离。如附图说明图1所示的单门控模式,该模式仅使用一个门控偏置电压Vp,为减小噪声,Vp的脉冲宽度必须在纳秒量级,一般都小于1纳秒,因而输出只有一个信号,导致雪崩信号和Vp脉冲通过APD结电容形成的微分信号(见图1中的实线尖峰)重叠,难以区分,目前的一些现有技术的方案均着力于将重叠的信号分离,因此上述现有技术存在如下缺点(1)电路实现复杂,大多数分离信号的方案依赖于APD结电容的精确补尝,导致了系统的不稳定性增加;(2)补尝技术对环境变化敏感,对屏蔽要求高,增加成本;(3)对于光子到达时间有微小变化的情况,单门控方案就必须扫描脉冲偏压来捕获信号,而这样做会因为改变APD的工作频率而导致雪崩点有微小变化,从而影响其工作稳定性。
技术实现思路
本专利技术的目的是根据上述产品的不足之处,提出了一种双门控雪崩光电二极管单光子的探测方法,该方法通过使用较宽的门偏压,使得门偏压前、后沿的微分信号和雪崩信号分离,即雪崩信号远离尖峰,因而在单光子探测时信号很容易被捕获。为了实现上述目的,本专利技术采用了如下技术方案本专利技术首先将一个直流高电压源通过一个与雪崩光电二极管APD串联的限流电阻为APD提供一个稳定的偏置电压,该电压略低于雪崩点电压,此时雪崩光电二极管不工作,当光子到来时,脉冲电源通过一个耦合电容将一个足够宽的脉冲电压,加载到雪崩光电二极管的阴极,并与原偏置电压发生叠加,使得在脉冲电压有效期间偏置电压大于雪崩点电压(即处于革盖状态),雪崩二极管开启工作,形成“门偏压”,由于其存在结电容,门偏压的前、后沿将在输出信号中引起一正一负的尖峰信号,正负尖峰信号之间的平缓区域就是可用于捕捉光子雪崩信号的时间段,在这一区域,门偏压的前沿所产生的尖峰与雪崩信号不会重叠,于是,雪崩信号即光子信号与门脉冲有效地分离了,然后再通过一个很窄的取样探测门就可以将光子信号取出。上述一个足够宽的脉冲电压指的是能够保证该偏压脉冲前沿(上升沿)和后沿(下降沿)所对应的尖峰与光子信号即雪崩信号在时间上有效分离,以便能够通过一个独立的探测门(示例电路见图5)将尖峰与雪崩信号分离。但过于宽的脉冲门将会由于耦合电容的作用而导致偏压幅度下降明显,因此脉冲宽度应当适当,典型值为50-200ns、5.000±0.005v。本专利技术的优点是,门偏压与光子信号不重叠,雪崩信号远离门偏压前、后沿的尖峰,很容易捕获信号,对环境变化不敏感,工作稳定,成本低,对于光子到达时间有微小变化的情况下,只需扫描探测门,而无须改变APD脉冲偏压的工作频率,大大改善了工作稳定性。附图概述附图1为现有技术的偏压门与探测门合一的单门控方案示意图;附图2为本专利技术技术方案双门控电路原理及波形示意图; 附图3为门偏压前后沿的尖峰和雪崩信号的实测波形示意图;附图4为改变探测门的相对位置用于对光子到达时间微小改变的探测;(1)光子到达时间固定的波形示意图;(2)通过改变探测门与门偏压前沿的延时td可实现扫描探测波形示意图;(3)在门偏压内设置多个探测门以探测有固定到达时间的多路光信号波形示意图;附图5为本专利技术双门控APD单光子雪崩信号处理原理图;附图6为本专利技术双门控APD雪崩信号处理时序图;附图7为本专利技术实施例示意图;附图8探测门与门偏压前沿的延时控制示意图;附图9为通过多个可控延时器并联产生多探测门的方案示意图;具体技术方案以下结合附图通过实例对本专利技术特征及其它相关特征作进一步详细说明,以便于同行业技术人员的理解如图2-9所示,本实施例是一种反向电压Vr门gate1和探测门gate2分离的“双门控”APD工作模式,(在InGaAs APD构成的红外单光子探测器中)门控偏压(gate1)与探测门(gate2)分离,gate1>gate2。本实施例所采用的方法如图2所示,虚线左侧同现有技术单门控模式如图1一样。首先将一个略低于雪崩点电压VB的直流高压VDC通过一个与雪崩光电二极管APD串联的限流电阻RL为APD提供一个稳定的偏置电压Vr,该电压略低于雪崩点电压VB,此时APD没有发生雪崩,Vr≈VDC;当光子到来时,门控偏压gate1通过耦合电容C,将一个足够宽(宽于雪崩脉冲上升沿)的脉冲电压,在APD阴极得到图2右上图所示的脉冲波形,峰值电压Vp大于雪崩点电压VB,因此,在门控脉冲持续期间,只要有光子入射,雪崩就可以发生。图2的右下图示出了在输出电阻Rs上获得的波形,可以看到,门控脉冲的前后沿分别对应一个正负尖脉冲,这是由于APD的结电容对门控脉冲起到了微分作用所造成的,图中虚线的尖峰代表雪崩脉冲信号,于是,雪崩信号与门脉冲有效地分离了。然后再通过一个很窄的取样探测门就可以将光子信号取出,如图3的gate2,电路实现部分对应于图2之左图。上述一个足够宽的脉冲电压指的是50-200ns、5.000±0.005v的脉冲电压。本实施例在进行单光子探测时,如图7所示首先同步信号控制单光子发射,同时触发APD门偏压,当光子到来时,门控偏压gate1通过耦合电容C,加到APD阴极,在门控脉冲持续期间,只要有光子入射,雪崩就可以发生。可以看到,门控脉冲的前后沿分别对应一个正负尖脉冲,这是由于APD的结电容对门控脉冲起到了微分作用所造成的。可控延时器以门偏压的前沿为基准,延迟到光脉冲到达的时间,产生一个较窄的TTL脉冲(<5纳秒,越窄则减少噪声的效果越好,但受到器件性能的限制),该脉冲则提供给D触发器(如74AS74)的数据端(D端)。根据D触发器的功能,时钟脉冲(CP端)的上升沿对应时刻的数据信号将被取出,由Q端输出(Q-是反相信号)。可以看出,“信号”波形通过“整形放大”后,变成了两个连续的TTL脉冲,其中,前一个是由门偏压的前沿尖峰引起的,因而始终出现,但它在时间上是远离“探测门”脉冲的,因此它的上升沿对应的数据信号(D端)始终是低电平,起到了“清零”作用,而后一个脉冲是由光子雪崩信号经整形后得到的,只有当探测到光子时,才会出现,用虚线表示;它的上升沿在时间上是正对探测门中央的,只有在探测门期间有CP上升沿,Q输出端才会输出高电平,于是,Q输出信号的高低,代表了光信号的有无。本实施例的本文档来自技高网
...

【技术保护点】
一种双门控雪崩光电二极管单光子探测方法,其特征在于该方法是首先将一个直流高电压源通过一个与雪崩光电二极管APD串联的限流电阻为APD提供一个稳定的偏置电压,该电压略低于雪崩点电压,当光子到来时,脉冲电源通过一个耦合电容将一个足够宽的脉冲电压,加载到雪崩光电二极管的阴极,并与原偏置电压发生叠加,使得在脉冲电压有效期间偏置电压大于雪崩点电压(即处于革盖状态),雪崩二极管开启工作,形成门控偏压gate1,门控偏压gate1的前、后沿将在输出信号中引起一正一负的尖峰信号,而正负尖峰信号之间的平缓区域就是可用于捕捉光子雪崩信号的时间段,在这一区域内再通过一个很窄的取样探测门gate2将光子信号取出。

【技术特征摘要】

【专利技术属性】
技术研发人员:曾和平周春源吴光陈修亮李和祥
申请(专利权)人:华东师范大学
类型:发明
国别省市:31[中国|上海]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1