基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法技术

技术编号:25481016 阅读:40 留言:0更新日期:2020-09-01 23:01
本发明专利技术公开了一种基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法,属于区域建筑负荷预测领域,通过业界广泛认可的建筑能耗计算引擎EnergyPlus,对不同地区下不同业态建筑在不同情境(朝向、围护结构热工参数、室内负荷强度、建筑使用时间表等)下的负荷进行模拟,形成基于正演模型的数据库,由于该数据库包含大量典型业态建筑情景,能较好涵盖实际工程设计情况;在此数据库基础上,采用高维空间聚类近邻搜索方法,实现快速预测区域全年逐时负荷。将区域内各业态建筑的全年逐时冷热负荷叠加,即可得到全年峰值冷负荷与峰值热负荷,用于指导设备选型工作。该方法简单方便,对理论研究领域与实际应用领域都产生了积极的意义。

【技术实现步骤摘要】
基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法
本专利技术属于区域建筑负荷预测领域,涉及一种基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法。
技术介绍
为了响应政府的号召且适应社会经济的快速发展和城市化进程的稳步推进,以新区形式进行规划建设并配有区域能源中心的项目越来越多,由于区域集中供能的效率比分散冷热源高,初投资小,易于维护管理,它已成为实现供能区域目标和可持续发展的优选之一。区域供能中的区域负荷包括各建筑叠加的冷热负荷、电负荷和生活热水负荷。其中电负荷预测对电网规划、发电设备选型及电力检修等至关重要,冷热负荷预测则主要影响区域供热供冷系统的设计与设备选型。在规划阶段的系统设计及选型中往往针对各类负荷考虑一定的富余系数,以保证系统的安全运行。但有对已建成的能源站项目调研发现,现运行的能源站系统设备配置过大,负荷率很低,不能实现节能、高效、环保、经济运行的设计初衷。究其最根本的原因是负荷预测准确性较差,设计负荷偏大,造成能源站供能侧负荷远大于实际用户需求侧负荷。负荷预测对于区域供能有重要的意义,国内外学者也提出了大量的本文档来自技高网...

【技术保护点】
1.一种基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法,其特征在于,包括:变量——负荷数据库设计,基于高维空间聚类近邻搜索的预测算法设计,以及结合数据库与算法的区域尺度负荷预测。/n

【技术特征摘要】
1.一种基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法,其特征在于,包括:变量——负荷数据库设计,基于高维空间聚类近邻搜索的预测算法设计,以及结合数据库与算法的区域尺度负荷预测。


2.根据权利要求1所述的基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法,其特征在于,建立城市常见典型建筑业态变量——负荷数据库,得到冷、热、电、生活热水负荷数据库,数据库的形式为sql。


3.根据权利要求2所述的基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法,其特征在于,变量——负荷数据库设计阶段的负荷预测模型中选择参数依次为体形系数、综合传热系数、夏季室内设定温度、冬季室内设定温度、人员密度、设备功率密度、照明密度、时刻表,其中前七个参数取四水平,时刻表取三水平。


4.根据权利要求1所述的基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法,其特征在于,采用基于数论中拟蒙特卡洛方法的试验设计方法——均匀设计进行高维空间填充设计,使试验点在试验范围内均匀充满参数空间,使用蒙特卡罗方法抽取10%试验点作为变量——负荷算例集。


5.根据权利要求2所述的基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法,其特征在于,对各城市各业态都分别进行变量——负荷算例集的抽样生成,并作为负荷数据库中的变量集合,数据库中的每一个变量都代表着该数据库对应的该城市该业态现实中的一栋建筑。


6.根据权利要求2所述的基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法,其特征在于,各城市各业态的冷、热、电、生活热水负荷数据库中的负荷结果均为EnergyPlus计算得出,且负荷为全年8760小时逐时负荷,单位均为W/㎡;各城市各业态的负荷计算与数据库建立,均由编写Python代码实现EnergyPlus的自动计算与数据库的自动建立。


7.根据权利要求2所述的基于高维空间聚类近邻搜索的区域建筑动态负荷预测方法,其特征在于,对变量——负荷数据库中的变量进行Kmeans聚类,将变量集合聚为k个簇,城市与业态不同,k的取值亦...

【专利技术属性】
技术研发人员:周宇昊潘毅群谢玉荣贾文琦赵大周王世朋张海珍李诗尧阮炯明
申请(专利权)人:华电电力科学研究院有限公司
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1