一种基于GBP的ACO方法技术

技术编号:25399231 阅读:57 留言:0更新日期:2020-08-25 23:04
本发明专利技术公开了一种基于GBP的ACO方法,上述方法能解决现有技术中的路径寻优方法没有办法结合基因维度进行学习、计算学习时占用大量内存、在进行优化时震荡数值偏大的问题,具有以下几个特点:(1)采用正反馈机制,使得搜索过程不断收敛,最终逼近最优解;(2)每个个体可以通过释放信息素来改变周围的环境,且每个个体能够感知周围环境的实时变化,个体间通过环境进行间接地通讯;(3)搜索过程采用分布式计算方式,多个个体同时进行并行计算,大大提高了算法的计算能力和运行效率;(4)启发式的概率搜索方式不容易陷入局部最优,易于寻找到全局最优解。

【技术实现步骤摘要】
一种基于GBP的ACO方法
本专利技术属于道路网络的路径寻优领域,尤其涉及一种基于GBP的ACO方法,上述方法能解决现有技术中的路径寻优方法没有办法结合基因维度进行学习、计算学习时占用大量内存、在进行优化时震荡数值偏大的问题。
技术介绍
路径寻优问题是计算机科学、运筹学、地理信息科学等学科的研究热点之一,被广泛应用在在城市停车场泊车、应急救援、GPS导航、兴趣点选址等领域。快速有效的路径寻优算法能够使应用系统迅速得到反馈,提供有价值的资源信息,满足用户需求。目前的路径寻优研究是基于经典图论和不断发展的计算机数据结构及算法的有效性结合,将道路路网抽象为网络模型,实际的路径抽象为网络的一条边,路径长度表征为边的权值,在该网络上求某两点的最短路径,属于非确定性问题。其中,最经典的方法为Dijkstra算法,主要特点是以起点为中心向外层扩展,一层层计算起点到该层的最短路径,直到遍历完所有节点为止。Dijkstra算法的优点是保证能找到最短路径,但是由于它需要遍历网络结构的所有节点,在网络节点数较大情况下,其算法的时间花费成倍甚至幂次增长,较难满本文档来自技高网...

【技术保护点】
1.一种基于GBP的ACO方法,其特征在于,包含以下步骤:/n1)读入并构建路网;将路网数据定义为弧段集和节点集组合,其中每个弧段包含弧段编号、道路名称、进节点编号、出节点编号、路段编号、路段长度、方向编号,每个节点包含节点编号、经纬度、邻接节点编号集和连接弧段编号集;分别读入以上信息,构建路网模型;/n2)初始化;设t=0,初始化bestLength为一个非常大的数(正无穷),bestTour为空,初始化所有的粒子的Delt矩阵所有元素初始化为0,Tabu表清空,Allowed表中加入所有的GBP数据节点,随机选择它们的起始位置(也可以人工指定),在Tabu中加入起始节点,Allowed中去...

【技术特征摘要】
1.一种基于GBP的ACO方法,其特征在于,包含以下步骤:
1)读入并构建路网;将路网数据定义为弧段集和节点集组合,其中每个弧段包含弧段编号、道路名称、进节点编号、出节点编号、路段编号、路段长度、方向编号,每个节点包含节点编号、经纬度、邻接节点编号集和连接弧段编号集;分别读入以上信息,构建路网模型;
2)初始化;设t=0,初始化bestLength为一个非常大的数(正无穷),bestTour为空,初始化所有的粒子的Delt矩阵所有元素初始化为0,Tabu表清空,Allowed表中加入所有的GBP数据节点,随机选择它们的起始位置(也可以人工指定),在Tabu中加入起始节点,Allowed中去掉该起始节点;
其中,算法粒子中所有粒子的数量为m,所有数据模块之间的信息素用矩阵pheromone表示,最短路径为bestLength,最佳路径为bestTour;每个粒子都有自己的内存,内存中用一个禁忌表(Tabu)来存储该粒子信息已经访问过的内容,表示其在以后的搜索中将不能访问这些内容;一个允许访问的项目表(Allowed)来存储它还可以访问的GBP项目;矩阵(Delta)来存储它在一个循环(或者迭代)中给所经过的路径释放的信息素;还有一些额外数据,例如一些控制参数(α,β,ρ,Q);粒子信息演变完全程的总成本或距离(tourLength);假定算法总共运行MAX_GEN次,运行时间为t;
3)为每个粒子选择下一个节点;为每个粒子选择下一个节点,该节点只能从Allowed中以相对概率搜索到,每搜到一个,就将该节点加入到Tabu中,并且从Allowed中删除该节点;该过程重复n-1次,直到所有的GBP数据库都遍历过一次。遍历完所有节点后,将起始节点加入到Tabu中;此时Tabu表元素数量为n+1(n为城市数量),Allowed元素数量为0;计成v不快乐算每个粒子的Delta矩阵值;最后计算最佳路径,比较每个粒子的路径成本,然后和bestLength比较,若它的路径成本比bestLength小,则将该值赋予bestLength,并且将其Tabu赋予BestTour;
4)更新信息素矩阵Delta;
5)检查终止条件,是否到达MAX_GEN次;
6)输出最优值bestlength。


2.根据权利要求1中所...

【专利技术属性】
技术研发人员:吴健王强刘智平
申请(专利权)人:上海解兮生物科技有限公司
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1