本发明专利技术公开一种基于弱磁原理的无损检测传感器及其测量方法,属于管道缺陷检测技术领域,本发明专利技术采用磁场信号采集器检测磁铁周围磁场的变化量,并通过信号处理电路将磁场信号输出,根据磁通密度变化情况来判断待测物表面是否具有缺陷。本发明专利技术的传感器具有结构简单,体积小、成本低,信号准确率高,可靠性好的优点,且本发明专利技术提供的缺陷检测方法为非接触式检测,对管道的直径没有要求,适用的场合广。
【技术实现步骤摘要】
一种基于弱磁原理的无损检测传感器及其测量方法
本专利技术涉及管道缺陷检测
,尤其涉及一种基于弱磁原理的无损检测传感器及其测量方法。
技术介绍
现有的管道检测技术多为漏磁检测和涡流检测。漏磁检测用磁铁磁化被测管道,若管道的材质是连续、均匀的,则材料中的磁感应线将被约束在材料中,磁通是平行于材料表面的,几乎没有磁感线从表面穿出,管道存在着切割磁力线的缺陷时,管道表面的缺陷会使磁导率发生变化,由于管道磁导率很小,磁阻很大,使磁路中的磁通发生畸变,磁感应线流向会发生变化,除了部分磁通直接通过缺陷,还有部分的磁通会泄露到表面上空,通过空气绕过缺陷重新进入材料。通过测量在空气中泄露的磁通密度来测量缺陷。该方法所用的传感器体积较大,同时还需要一个钢刷及大型永磁体将管道磁化,使其磁饱和才行。虽然漏磁传感器精度较高,但是对于一些不需要量化的场合,该方法成本较高。漏磁传感器的工作原理如图1所示,用载有交变电流的检测线圈靠近管道,由于线圈磁场的作用,管道中会感生出涡流。涡流的大小,相位以及流动方式等受管道导电性能的影响,而涡流产生的反作用磁场又使检测线圈的阻抗发生变化,因此,通过测定检测线圈阻抗的变化,可以得到被测管道有无缺陷的结论。该方法结构复杂,技术难度及功耗较高,对于一些不需要量化的场合,造成浪费。
技术实现思路
针对上述现有技术的不足,本专利技术提供一种基于弱磁原理的无损检测传感器及其测量方法,不仅结构简单,还适用于多种不需要量化的场合。本申请提供了一种基于弱磁原理的无损检测传感器,包括外壳、磁铁、电路板和磁场信号采集器;所述磁铁、电路板和磁场信号采集器均封装在所述外壳内;所述磁铁和磁场信号采集器分别电连接至电路板;所述电路板通过导线向所述外壳的外部导出信号;所述磁铁用于将所述外壳表面的待测物周围产生磁场;所述磁场信号采集器用于检测所述磁铁周围的磁通密度信号,并将检测到的磁通密度信号处理后输出。可选的,所述磁场信号采集器为磁敏组件或线圈。可选的,所述磁场信号采集器的数量为1个或多个。可选的,所述磁敏组件为数字磁敏组件和模拟磁敏组件之中的一种。可选的,当所述磁敏组件为模拟磁敏组件时,所述电路板设有滤波电路,对所述磁场信号采集器采集的电压信号进行降噪。本申请还提供了利用所述的无损检测传感器检测缺陷的方法,所述方法包含如下步骤:步骤1:将无损检测传感器在待测物表面平行移动;步骤2:磁场信号采集器检测磁铁周围的磁通密度是否发生变化;步骤3:若磁铁周围磁场发生变化,则磁场信号采集器检测所述磁铁周围的磁通密度信号,并将检测到的磁通密度信号处理后输出;步骤4:若检测到信号波动输出,则判断检测到磁场变化量处的待测物表面存在缺陷。可选的,所述待测物包括:焊道或铁磁性管道内外表面。采用上述技术方案所产生的有益效果在于:1、本专利技术提供的一种基于弱磁原理的无损检测传感器,其结构简单,体积小、成本低,信号的准确率高,可靠性好;2、本专利技术提供的缺陷检测方法为非接触式检测,适用的场合更广,对管道的直径没有要求,可以对变直径的管道进行检测。附图说明为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。图1为现有技术中漏磁原理图;图2为本专利技术一种基于弱磁原理的无损检测传感器的结构示意图;图3为本专利技术待测物表面缺陷所导致的磁通密度变化现象示意图;图4为本专利技术实施例一中无损检测传感器的结构示意图;图5为本专利技术实施例一中材料表面存在缺陷前后检测到的电压信号波形图;图6为本专利技术实施例二中无损检测传感器的结构示意图;图7为本专利技术实施例二中材料表面存在缺陷前后检测到的电压信号波形图。具体实施方式如图2所示为本专利技术一种基于弱磁原理的无损检测传感器的结构示意图,包括:包括外壳、磁铁、电路板和磁场信号采集器;所述磁铁、电路板和磁场信号采集器均封装在所述外壳内;所述磁铁和磁场信号采集器分别电连接至电路板;所述电路板通过导线向所述外壳的外部导出信号;所述磁铁用于将所述外壳表面的待测物周围产生磁场;在本实施例中,利用磁铁的弱磁原理,可以在待测物周围产生恒定磁场,该磁场不需要太强,只需能够检测到磁场变化即可,另外,采用磁铁产生磁场更加小巧,不占用较大的体积,简化了传感器的结构。所述磁场信号采集器用于检测所述磁铁周围的磁通密度信号,并将检测到的磁通密度信号处理后输出,对应的,如磁场信号采集器为数字传感器,则输出方式则采用数字信号协议方式输出,如磁场信号采集器为模拟传感器,则是以电压信号形式输出。在本实施例中,所述磁通密度信号为弱磁无损检测的原理,由待测物表面缺陷所导致的磁通密度变化现象如图3所示,在磁铁经过缺陷前后,磁铁周围的磁场发生变化。下面结合附图和实施例,对本专利技术的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但并非用来限制本申请的范围。实施例1:本实施例的无损检测传感器结构如图4所示,包括外壳、磁铁、电路板和磁场信号采集器;所述磁铁、电路板和磁场信号采集器均封装在所述外壳内;所述磁铁和磁场信号采集器分别电连接至电路板;所述电路板通过导线向所述外壳的外部导出信号;所述磁铁用于将所述外壳表面的待测物周围产生磁场;所述磁场信号采集器用于检测所述磁铁周围的磁通密度信号,并将检测到的磁通密度信号转换成电压信号,经所述电路板对电压信号进行处理后输出。本实施例中传感器的磁场信号采集器可由两个数字磁敏组件构成。其工作原理为:利用磁铁产生磁场,在磁铁附近两个数字磁敏组件采集磁场变化信号。当传感器在铁磁性材料表面移动时,如果铁磁性表面有缺陷或者裂痕,会引起磁铁周围磁场的变化,此时数字式磁敏组件将这些磁场变化量直接可进行数据整理,再通过导线将信号输出至远端的数据采集分析系统中。数字磁敏元件弱磁探头处理方法:数字元件不需要进行波形的滤波,利用控制器将磁敏元件的数据进行采集,然后整理一下数据结构,再将数据传到控制器即可。即磁敏元件发出的就是数字信号,然后通过处理电路的还是数字信号发往采集系统。利用数字磁敏组件构成的无损检测传感器检测缺陷的方法,为了突出有缺陷和没缺陷的区别,本实施例中采用两个数字磁敏组件构成的无损检测传感器,对待测物表面进行检测,步骤如下:步骤1:将两个数字式无损检测传感器同时在有缺陷和没缺陷的两个待测物表面平行移动;步骤2:磁场信号采集器检测磁铁周围的磁通密度是否发生变化;步骤3:若磁铁周围磁场发生变化,则磁场信号采集器检测所述磁铁周围的磁通密度信号,并将检测到的磁通密度信号处理后输出;步骤4:若检测到信号波动输出,则判断检测到磁场变化量处的待测物表面存在缺陷。将数字信号进行计算,如图5所示,为计算出来的磁本文档来自技高网...
【技术保护点】
1.一种基于弱磁原理的无损检测传感器,其特征在于,包括外壳、磁铁、电路板和磁场信号采集器;所述磁铁、电路板和磁场信号采集器均封装在所述外壳内;所述磁铁和磁场信号采集器分别电连接至电路板;所述电路板通过导线向所述外壳的外部导出信号;/n所述磁铁用于将所述外壳表面的待测物周围产生磁场;/n所述磁场信号采集器用于检测所述磁铁周围的磁通密度信号,并将检测到的磁通密度信号处理后输出。/n
【技术特征摘要】
1.一种基于弱磁原理的无损检测传感器,其特征在于,包括外壳、磁铁、电路板和磁场信号采集器;所述磁铁、电路板和磁场信号采集器均封装在所述外壳内;所述磁铁和磁场信号采集器分别电连接至电路板;所述电路板通过导线向所述外壳的外部导出信号;
所述磁铁用于将所述外壳表面的待测物周围产生磁场;
所述磁场信号采集器用于检测所述磁铁周围的磁通密度信号,并将检测到的磁通密度信号处理后输出。
2.根据权利要求1所述的一种基于弱磁原理的无损检测传感器,其特征在于,所述磁场信号采集器为磁敏组件或线圈。
3.根据权利要求1或2所述的一种基于弱磁原理的无损检测传感器,其特征在于,所述磁场信号采集器的数量为1个或多个。
4.根据权利要求2所述的一种基于弱磁原理的无损检测传感器,其特征在于,所述磁敏组件为数字磁敏组件和模拟磁敏组...
【专利技术属性】
技术研发人员:徐春风,宋华东,徐义忠,诸海博,王宇楠,郭晓婷,宋云鹏,汤银龙,张文强,李放,
申请(专利权)人:沈阳仪表科学研究院有限公司,
类型:发明
国别省市:辽宁;21
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。