本发明专利技术涉及一种用于经济微藻培养的可控粒径微泡发生装置,其特征在于:其包括具有预定容积的光生物反应器主体、可控粒径微泡发生装置、导流装置、以及LED波频双变光照系统;所述可控粒径微泡发生装置设置在所述光生物反应器主体底部,用于提供经济微藻培养所需的碳传质和循环动力,同时解析溶氧;所述导流装置悬挂设置在所述光生物反应器主体内部,用于促进液体循环及微泡传质;所述LED波频双变光照系统设置在所述光生物反应器主体外侧或内部,用于根据特定经济微藻需求提供其生长最优波长及光暗频率。本发明专利技术结构简单,操作方便,可以广泛应用于经济微藻的培养中。
【技术实现步骤摘要】
一种用于经济微藻培养的可控粒径微泡发生装置本申请是申请号为201810168434.0、申请日为2018年02月28日、专利技术创造名称为“一种用于经济微藻培养的微泡光生物反应器”的分案申请。
本专利技术属于生物工程领域,特别是涉及一种用于经济微藻培养的可控粒径微泡发生装置。
技术介绍
经济微藻因富含多种生物活性物质,在食品、水产养殖、医药、美容、生物能源等行业具有广泛的应用。例如小球藻可以应用于单细胞蛋白生产;三角褐指藻被应用于海参养殖育苗;而雨生红球藻因其富含虾青素,具有强大的抗氧化能力,在保健品,化妆品,医药行业拥有广阔市场。因此,经济微藻生物质能产业是各国争先发展的新型产业。而要实现经济微藻生物质能产业的快速发展,首要条件是低成本且高效地获取高密度生物量。目前经济微藻的主要培养方式为露天培养和光生物反应器培养。传统的露天培养由于可控性不高、占地面积大、易染菌等缺点,使得微藻培养工艺的研发趋势慢慢推向了光生物反应器。相比露天培养,光生物反应器培养具有培养条件可控性高、占地面积小、操作灵活、产率高及适合单一性培养等特点,尤其受到经济微藻培养的青睐。但是传统光生物反应器培养仍然面临着供碳不足、溶氧堆积、光能利用率低等技术瓶颈。具体体现如下:(a)、光能利用率低:在较高细胞浓度时,易发生藻间遮蔽效应,使得藻细胞对光源的利用变得十分有限,从而难以实现经济微藻的高密度培养。(b)、CO2供给不足:微藻的供碳主要通过通入一定比例的CO2气体来实现,而在实际培养过程中,CO2的供给并不能满足微藻最优生长的需求。有研究显示微藻对CO2的吸收速度高达0.2~0.3×10-4mol/L/min。而传统曝气方式的CO2传质速率仅为0.4×10-7~0.7×10-5mol/L/min,远不能满足微藻对溶解CO2的需求。因此,即使光照充足,如果反应器达不到充足的CO2供给,同样无法使得微藻最优生长。(c)、溶氧积累严重:微藻的光合放氧速率可达0.3×10-4mol/L,而传统鼓气对O2的吹脱速率只有约0.16×10-4mol/L/min,小于微藻的光合放氧速率。因此,在密闭培养中容易发生溶氧的累积,造成溶氧过饱和从而抑制藻类生长。关于光能利用率的优化,目前的主要思路包括光源的改进和光路的缩短。例如Bourgoin等(专利号US20130029404A1)将由光伏电池组成的照明隔板置于光生物反应器中心,为不同微藻品种提供生长所需波长。Bazaire等(专利号US20090203116A1)通过内置光纤为反应器提供360度光照。Friederich等(专利号US20140073035A1)通过导光管将外置LED光源产生的光通量收集并导入光生物反应器内部,为培养提供光照。黄旭雄等(专利号CN104651215A)通过减小光生物反应器内径,并内置LED灯带的方式,实现节能、缩短光程、提高光能利用率等目的。除此之外,还有许多类似的设计,在一定程度上提高了反应器的光能利用率。然而这些设计并没有从根本上解决高浓度时藻间遮蔽的问题,此外,在传统CO2供给不能满足微藻快速生长所需的条件下,光源或光路的优化并不能真正有效地提高光能利用率,相反过剩的光照可能导致微藻光呼吸作用从而影响生物质产量。对于CO2供给不足及溶氧堆积问题,提高曝气装置的气液传质能力是主要的解决方法。郑范锡等(专利号CN102776117)将CO2供应至光生物反应器外接的中空纤维膜模件中,与培养基充分混合,增加培养基中的CO2饱和率。此方法的原理是通过填料的多孔结构,增加气体与液体接触时间,从而提高气液传质效率。然而该专利技术专利中的外接气液混合装置(也就是中空纤维膜模件)还需要配备液体泵将培养基抽吸到反应器主体中,增加了系统复杂程度及额外能耗。施云海等(专利号CN105985910)通过将藻液以雾化喷淋的方式通入反应器外接吸收塔中,使其与塔底部通入的CO2气体充分接触,以提高气-液传质。经过吸收塔的藻液含有较高CO2浓度,经液体泵抽回反应器主体中。此方法利用增加气-液比表面积的原理提高CO2传质。然而,藻液经过喷淋雾化装置极有可能造成细胞损伤,从而影响其生长。相比雾化藻液,增加气-液传质比表面积更为合理且有效的方法是雾化气泡,即微气泡。目前,微气泡被广泛应用于水处理业,可有效提高溶氧的传质。而其在微藻培养邻域的应用较少,即使已有的相关专利也主要用于微藻采收,例如潘克厚等(专利号CN105002086)通过微气泡持续气浮采收跑池中的藻细胞。将微泡作为CO2气体的载体,可大幅增加微藻对CO2利用率从而克服供碳不足的瓶颈。成光模(专利号CN102978102A)利用外接微泡发生器产生含有微泡的工艺水,并将工艺水供应至光生物反应器用于培养微藻。杨卫民等(专利号CN106434326等)通过转子螺旋泵的高速轴向旋转,将气液两项流体中的CO2气泡切成微小气泡,之后将含有微小气泡的微泡液通入管式光生物反应器中培养微藻。这两个方法在原理上均通过微泡高效的气液传质提高微藻的生物质产量,然而前者微泡产生的原理是将CO2气体注入到混合室内呈螺旋缠绕的软管中与软管中的水混合,通过较长的停留时间,CO2溶于液体或以微小气泡形式滞留于水中形成工艺水,再将工艺水通入培养体系中提供微藻生长所需。后者利用机械剪切的原理产生微泡水,供给培养体系。然而两者只考虑到了微泡的传质特性,却忽略了微泡高效动量传导的优点,均采取了外接微泡发生器的方式制作微泡水,因此需通过额外的液体泵为光生物反应器主体供给微泡水及加强液体循环。此外两者产生的微气泡大小不可控,对于不同经济微藻对碳的需求量可能存在供给过剩或供给不足的问题。同时,微泡水的产生还伴随着较大的能耗以及较复杂的微泡产生工艺,在工业化扩大的应用中可能存在维护成本、能耗成本、建造成本等过高的问题。综上,近年来国内外已经对经济微藻的培养工艺进行了大量的研究,但上述技术瓶颈仍未得到有效的解决,大部分研究依然停留在实验室阶段,只有极个别公司和研究机构建立了工业化生产模式,不免形成了生产技术和产品价格上的垄断。因此如何突破这些技术瓶颈,实现经济微藻的高密度培养仍然是国内外微藻生物技术邻域研究的焦点。
技术实现思路
针对上述问题,本专利技术的目的是提供一种用于经济微藻培养的微泡光生物反应器(MPBR),其能够一站式解决传统培养所面临的主要技术瓶颈,激发微藻生长潜能,提高经济微藻生物质产量,适用于实验室及规模化培养。为实现上述目的,本专利技术采取以下技术方案:一种用于经济微藻培养的微泡光生物反应器,其特征在于:其包括具有预定容积的光生物反应器主体、可控粒径微泡发生装置、导流装置、以及LED波频双变光照系统;所述可控粒径微泡发生装置设置在所述光生物反应器主体底部,用于提供经济微藻培养所需的碳传质和循环动力,同时解析溶氧;所述导流装置悬挂设置在所述光生物反应器主体内部,用于促进液体循环及微泡传质;所述LED波频双变光照系统设置在所述光生物反应器主体外侧或内部,用于根据特定经济微藻需求提供其生长最优波长及光暗频率。所述光生物反应器主体为管状或板状结构,本文档来自技高网...
【技术保护点】
1.一种用于经济微藻培养的可控粒径微泡发生装置,其特征在于:其包括底座、微孔陶瓷膜片和环形固定片;/n所述底座包括基板和设置在所述基板上的腔体;所述腔体上部中央设置有一圆锥形凹槽,所述圆锥形凹槽中部设置有贯穿所述腔体上、下两端的进气口,所述进气口下端与设置在所述基板中部的变径进气嘴相连,所述变径进气嘴的另一端依次通过进气阀门、进气管道与CO
【技术特征摘要】
1.一种用于经济微藻培养的可控粒径微泡发生装置,其特征在于:其包括底座、微孔陶瓷膜片和环形固定片;
所述底座包括基板和设置在所述基板上的腔体;所述腔体上部中央设置有一圆锥形凹槽,所述圆锥形凹槽中部设置有贯穿所述腔体上、下两端的进气口,所述进气口下端与设置在所述基板中部的变径进气嘴相连,所述变径进气嘴的另一端依次通过进气阀门、进气管道与CO2混合气相连;
所述微孔陶瓷膜片通过所述环形固定片固定设置在所述圆锥体凹槽上,所述微孔陶瓷膜片下表面与所述圆锥体凹槽之间形成用...
【专利技术属性】
技术研发人员:蔡中华,应轲臻,周进,陶益,
申请(专利权)人:清华大学深圳国际研究生院,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。