当前位置: 首页 > 专利查询>浙江大学专利>正文

一种超重力环境固定式多场耦合作用下材料性能测试系统技术方案

技术编号:24777811 阅读:49 留言:0更新日期:2020-07-04 19:46
本实用新型专利技术公开了一种超重力环境固定式多场耦合作用下材料性能测试系统。包括吊装密封舱、承力架、高温炉、力学测试装置、缓冲装置;吊装密封舱内部固定安装有承力架和高温炉,承力架罩在高温炉上,缓冲装置安装于高温炉内的底部,力学测试装置上下两端连接在承力架顶部和高温炉底部内,试样连接安装在力学测试装置末端。本实用新型专利技术解决高速旋转状态下体积力‑面力‑温度耦合作用下材料动态性能测试的难题,装置结构简单,操作方便且安全可靠。

A fixed multi field coupling material performance testing system in high gravity environment

【技术实现步骤摘要】
一种超重力环境固定式多场耦合作用下材料性能测试系统
本技术涉及材料性能测试
,尤其涉及一种超重力环境下固定式体积力-面力-温度耦合作用下材料性能测试系统。
技术介绍
随着现代航空发动机推重比增加和涡轮级数减少,涡轮前燃气进口温度从上世纪70年代的1400-1500K发展到本世纪初的1600-1750K,推重比12-15发动机涡轮前燃气进口温度将高达2000-2200K,这对发动机核心热端部件提出了更高的性能要求。高压涡轮工作叶片作为热端部件关键组成部分之一,服役时长期工作在高温、高压、高转速、交变负载等耦合加载条件下。服役时涡轮工作叶片绕发动机轴线高速旋转,其作用是利用燃气膨胀做功,将燃气的位能和热能转换为转子的机械功,所以服役过程中涡轮工作叶片主要承受离心载荷、热载荷、气动载荷和振动载荷的耦合作用。离心载荷产生的离心应力,属于体积力,使积叠线与径向线不完全重合的弯扭结构叶片,同时产生径向拉应力、扭转应力和弯曲应力。热载荷产生的热应力与几何约束密切相关,几何约束越多,热应力越大,尤其气膜孔处的应力集中,将显著减低叶片的疲劳寿命。气动载荷产生的气动力,是一种表面分布压力,属于面积力,作用在叶片各个表面,沿叶高和叶宽方向呈不均匀分布。因此,涡轮工作叶片在径向拉应力、扭转应力、弯曲应力和热应力的耦合作用下同时发生剪切变形、拉伸变形和扭曲变形,这显然不同于实验室单轴应力状态下的变形行为。原子固相扩散是导致材料服役过程中微观组织演化的根本原因,叶片高速旋转产生的体积力-面力-温度动态耦合显著增加原子在界面、位错、空洞等缺陷处的扩散速率,使其显微结构演化不同于轴向面力作用。同时,密度不同的析出相在超重力作用下,由于其弹性模量、热膨胀性等不同在各析出相之间产生复杂的互不协调的塑性变形,进一步增大不同密度物质间相对运动的驱动力,进而在材料内部产生巨大的内应力,致使材料的损伤机制显著不同于面力作用下材料损伤机制。
技术实现思路
为了解决针对上述高速旋转状态下体积力-面力-温度耦合作用下材料动态性能测试的难题,本技术首创提供了一种超重力环境下固定式体积力-面力-温度耦合作用下材料性能测试系统,装配简单、使用方便、安全系数高,并且是用于超重力工况的材料性能测试,该装置适合1g-2500g超重力环境下,温度从室温-1600℃,提供的最大面力为300kN。本技术解决高速旋转状态下材料高温力学性能测试的关键难题。利用该装置,借助超重力环境下,可以实时获得体积力-面力-温度耦合环境下材料力学性能数据。本技术采用的技术方案:本技术包括吊装密封舱、承力架、高温炉、力学测试装置、缓冲装置;吊装密封舱内部固定安装有承力架和高温炉,承力架罩在高温炉上,缓冲装置安装于高温炉内的底部,力学测试装置上下两端连接在承力架顶部和高温炉底部内,试样6连接安装在力学测试装置末端。所述的吊装密封舱包括上密封穹顶和吊装密封腔体,吊装密封腔体内部设有腔体,腔体上端开口,吊装密封腔体的两侧侧壁向外连接有舱体吊耳,两侧的舱体吊耳铰接连接到超重力离心机的吊篮转臂上,上密封穹顶通过螺栓安装连接到吊装密封腔体的腔体开口端面并密封连接;上密封穹顶的中央安装有舱体接口件,舱体接口件具体包括上玻璃压装法兰、上法兰紧固螺钉、石英玻璃和真空插座,石英玻璃被上玻璃压装法兰固定安装在通讯上密封舱盖顶部中心的开口处,上玻璃压装法兰通过上法兰紧固螺钉固定于上密封舱盖顶部,通讯上密封舱盖,通讯舱体底部开孔,开孔处安装真空插座。所述的上密封穹顶外边缘开设第二螺孔,螺栓穿过第二螺孔连接到吊装密封腔体,从而使得上密封穹顶与吊装密封腔体连接。所述的舱体吊耳径向伸出的凸耳部分的面开设多个间隔的固定孔,螺栓穿过固定孔连接到超重力离心机的转臂,使得舱体吊耳通过固定孔及螺栓与超重力离心机的转臂相连。所述的吊装密封腔体外侧壁上开设有真空接口,真空接口直接和吊装密封舱外部的真空管道连接;吊装密封腔体的腔体内底面固定安装有布线支架,所吊装密封腔体外侧壁上开设有真空接口、接线孔和安装孔,接线孔处安装接线电级,接线电级经过接线孔与吊装密封腔体内部的布线支架相连;弱信号控制电线经过安装孔与布线支架相连。所述的承力架为圆弧凸台结构,安装在吊装密封舱的内部,吊装密封舱的内壁加工出台阶面,承力架外边缘通过螺栓固定在台阶面上,罩在高温炉的上方。所述的高温炉固定于超重力试验舱中,所述的高温炉包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层、高强度炉管、发热体和炉体承载体;上炉体主要由上隔热盖、上腔体外壳、上腔体中壳、上腔体隔热层、上腔体下固定盖组成,上腔体外壳、上腔体中壳、上腔体隔热层分别从外到内安装形成上炉三层结构,上隔热盖和上腔体下固定盖分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳和上腔体中壳之间以及上腔体中壳和上腔体隔热层之间均有间隙作为空气隔热层;中炉体主要由中隔热盖、中腔体外壳、中腔体中壳、中腔体隔热层、中腔体下固定盖组成,中腔体外壳、中腔体中壳、中腔体隔热层分别从外到内安装形成中炉三层结构,中隔热盖和中腔体下固定盖分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳和中腔体中壳之间以及中腔体中壳和中腔体隔热层之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖和中炉体的中隔热盖之间固定连接;下炉体主要由下隔热盖、下腔体外壳、下腔体中壳、下腔体隔热层、下腔体下固定盖组成,下腔体外壳、下腔体中壳、下腔体隔热层分别从外到内安装形成下炉三层结构,下隔热盖和下腔体下固定盖分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳和下腔体中壳之间以及下腔体中壳和下腔体隔热层之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖和下炉体的下隔热盖之间固定连接;炉体承载体置于下炉体的下腔体隔热层底部,高强度炉管置于炉体承载体上,高强度炉管外分别和上炉体的上腔体隔热层、中炉体的中腔体隔热层、下炉体的下腔体隔热层之间填充有隔热保温层;高强度炉管内部加工有螺旋状凹槽,螺旋状凹槽装有螺旋状的发热体,螺旋状凹槽在朝向高强度炉管内壁的一侧开设有散热通道,通过散热通道将发热体产生的热量均匀辐射到高强度炉管中央。所述的力学测试装置置于超重力试验舱中,所述的力学测试装置包括拉杆、固线结构、夹头、热电偶、紧缩螺母和面力加载块;拉杆的顶端与吊装密封舱内的承力架顶端中央固定相连,拉杆主要用来承受材料性能测试过程中体积力和面力耦合作用产生的拉应力;拉杆底端经夹头和试样上端相连,试样为待测试材料力学性能的样品;试样下端设有外螺纹,试样下端的外螺纹旋入到面积加载块的螺纹孔中并通过紧缩螺母紧固连接;面积加载块具体为带有可调节自身重量的块结构,通过不同重量的面积加载块结合离心机不同转速的离心力对试样施加不同面力;面力加载块下端面放置在缓冲装置上,缓冲装置置于超重力试验舱的底部;三根热电偶的探测端焊接在试样的不同位置处,应变片安装在焊接在试样上,三根热电偶和应变片的输出端由导线引出连接到外部的信号采集器,拉本文档来自技高网
...

【技术保护点】
1.一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:包括吊装密封舱(1)、承力架(2)、高温炉(3)、力学测试装置(4)、缓冲装置(5);吊装密封舱(1)内部固定安装有承力架(2)和高温炉(3),承力架(2)罩在高温炉(3)上,缓冲装置(5)安装于高温炉(3)内的底部,力学测试装置(4)上下两端连接在承力架(2)顶部和高温炉(3)底部内,试样(6)连接安装在力学测试装置(4)末端;/n所述的高温炉(3)固定于超重力试验舱中,所述的高温炉(3)包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层(316)、高强度炉管(317)、发热体(318)和炉体承载体(319);上炉体主要由上隔热盖(31)、上腔体外壳(32)、上腔体中壳(33)、上腔体隔热层(34)、上腔体下固定盖(35)组成,上腔体外壳(32)、上腔体中壳(33)、上腔体隔热层(34)分别从外到内安装形成上炉三层结构,上隔热盖(31)和上腔体下固定盖(35)分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳(32)和上腔体中壳(33)之间以及上腔体中壳(33)和上腔体隔热层(34)之间均有间隙作为空气隔热层;中炉体主要由中隔热盖(36)、中腔体外壳(37)、中腔体中壳(38)、中腔体隔热层(39)、中腔体下固定盖(310)组成,中腔体外壳(37)、中腔体中壳(38)、中腔体隔热层(39)分别从外到内安装形成中炉三层结构,中隔热盖(36)和中腔体下固定盖(310)分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳(37)和中腔体中壳(38)之间以及中腔体中壳(38)和中腔体隔热层(39)之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖(35)和中炉体的中隔热盖(36)之间固定连接;下炉体主要由下隔热盖(311)、下腔体外壳(312)、下腔体中壳(313)、下腔体隔热层(314)、下腔体下固定盖(315)组成,下腔体外壳(312)、下腔体中壳(313)、下腔体隔热层(314)分别从外到内安装形成下炉三层结构,下隔热盖(311)和下腔体下固定盖(315)分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳(312)和下腔体中壳(313)之间以及下腔体中壳(313)和下腔体隔热层(314)之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖(310)和下炉体的下隔热盖(311)之间固定连接;炉体承载体(319)置于下炉体的下腔体隔热层(314)底部,高强度炉管(317)置于炉体承载体(319)上,高强度炉管(317)外分别和上炉体的上腔体隔热层(34)、中炉体的中腔体隔热层(39)、下炉体的下腔体隔热层(314)之间填充有隔热保温层(316);高强度炉管(317)内部加工有螺旋状凹槽(318-1),螺旋状凹槽(318-1)装有螺旋状的发热体(318),螺旋状凹槽(318-1)在朝向高强度炉管(317)内壁的一侧开设有散热通道(318-2),通过散热通道(318-2)将发热体(318)产生的热量均匀辐射到高强度炉管(317)中央;/n所述的力学测试装置(4)置于超重力试验舱中,所述的力学测试装置(4)包括拉杆(41)、固线结构(42)、夹头(43)、热电偶(44)、紧缩螺母(46)和面力加载块(47);拉杆(41)的顶端与吊装密封舱(1)内的承力架(2)顶端中央固定相连,拉杆(41)主要用来承受材料性能测试过程中体积力和面力耦合作用产生的拉应力;拉杆(41)底端经夹头(43)和试样(6)上端相连,试样(6)为待测试材料力学性能的样品;试样(6)下端设有外螺纹,试样(6)下端的外螺纹旋入到面力加载块(47)的螺纹孔中并通过紧缩螺母(46)紧固连接;面力加载块(47)具体为带有可调节自身重量的块结构,通过不同重量的面力加载块(47)结合离心机不同转速的离心力对试样(6)施加不同面力;面力加载块(47)下端面放置在缓冲装置上,缓冲装置置于超重力试验舱的底部;三根热电偶(44)的探测端焊接在试样(6)的不同位置处,应变片安装在焊接在试样(6)上,三根热电偶(44)和应变片的输出端由导线引出连接到外部的信号采集器,拉杆(41)中部安装有多个固线结构(42),导线经固线结构(42)引出并固定位置;拉杆(41)的下部和试样(6)置于高温炉(3)的高强度炉管(317)内,面力加载块(47)穿过高温炉(3)的高强度炉管(317)伸入到缓冲装置(5)中。/n...

【技术特征摘要】
1.一种超重力环境固定式多场耦合作用下材料性能测试系统,其特征在于:包括吊装密封舱(1)、承力架(2)、高温炉(3)、力学测试装置(4)、缓冲装置(5);吊装密封舱(1)内部固定安装有承力架(2)和高温炉(3),承力架(2)罩在高温炉(3)上,缓冲装置(5)安装于高温炉(3)内的底部,力学测试装置(4)上下两端连接在承力架(2)顶部和高温炉(3)底部内,试样(6)连接安装在力学测试装置(4)末端;
所述的高温炉(3)固定于超重力试验舱中,所述的高温炉(3)包括从上到下依次布置连接的上炉体、中炉体、下炉体以及隔热保温层(316)、高强度炉管(317)、发热体(318)和炉体承载体(319);上炉体主要由上隔热盖(31)、上腔体外壳(32)、上腔体中壳(33)、上腔体隔热层(34)、上腔体下固定盖(35)组成,上腔体外壳(32)、上腔体中壳(33)、上腔体隔热层(34)分别从外到内安装形成上炉三层结构,上隔热盖(31)和上腔体下固定盖(35)分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳(32)和上腔体中壳(33)之间以及上腔体中壳(33)和上腔体隔热层(34)之间均有间隙作为空气隔热层;中炉体主要由中隔热盖(36)、中腔体外壳(37)、中腔体中壳(38)、中腔体隔热层(39)、中腔体下固定盖(310)组成,中腔体外壳(37)、中腔体中壳(38)、中腔体隔热层(39)分别从外到内安装形成中炉三层结构,中隔热盖(36)和中腔体下固定盖(310)分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳(37)和中腔体中壳(38)之间以及中腔体中壳(38)和中腔体隔热层(39)之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖(35)和中炉体的中隔热盖(36)之间固定连接;下炉体主要由下隔热盖(311)、下腔体外壳(312)、下腔体中壳(313)、下腔体隔热层(314)、下腔体下固定盖(315)组成,下腔体外壳(312)、下腔体中壳(313)、下腔体隔热层(314)分别从外到内安装形成下炉三层结构,下隔热盖(311)和下腔体下固定盖(315)分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳(312)和下腔体中壳(313)之间以及下腔体中壳(313)和下腔体隔热层(314)之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖(310)和下炉体的下隔热盖(311)之间固定连接;炉体承载体(319)置于下炉体的下腔体隔热层(314)底部,高强度炉管(317)置于炉体承载体(319)上,高强度炉管(317)外分别和上炉体的上腔体隔热层(34)、中炉体的中腔体隔热层(39)、下炉体的下腔体隔热层(314)之间填充有隔热保温层(316);高强度炉管(317)内部加工有螺旋状凹槽(318-1),螺旋状凹槽(318-1)装有螺旋状的发热体(318),螺旋状凹槽(318-1)在朝向高强度炉管(317)内壁的一侧开设有散热通道(318-2),通过散热通道(318-2)将发热体(318)产生的热量均匀辐射到高强度炉管(317)中央;
所述的力学测试装置(4)置于超重力试验舱中,所述的力学测试装置(4)包括拉杆(41)、固线结构(42)、夹头(43)、热电偶(44)、紧缩螺母(46)和面力加载块(47);拉杆(41)的顶端与吊装密封舱(1)内的承力架(2)顶端中央固定相连,拉杆(41)主要用来承受材料性能测试过程中体积力和面力耦合作用产生的拉应力;拉杆(41)底端经夹头(43)和试样(6)上端相连,试样(6)为待测试材料力学性能的样品;试样(6)下端设有外螺纹,试样(6)下端的外螺纹旋入到面力加载块(47)的螺纹孔中并通过紧缩螺母(46)紧固连接;面力加载块(47)具体为带有可调节自身重量的块结构,通过不同重量的面力加载块(47)结合离心机不同转速的离心力对试样(6)施加不同面力;面力加载块(47)下端面放置在缓冲装置上,缓冲装置置于超重力试验舱的底部;三根热电偶(44)的探测端焊接在试样(6)的不同位置处,应变片安装在焊接在试样(6)上,三根热电偶(44)和应变片的输出端由导线引出连接到外部的信号采集器,拉杆(41)中部安装有多个固线结构(42),导线经固线结构(42)引出并固定位置;拉杆(41)的下部和试样(6)置于高温炉(3)的高强度炉管(317)内,...

【专利技术属性】
技术研发人员:韦华卢士亮林伟岸蒋建群张泽陈云敏
申请(专利权)人:浙江大学
类型:新型
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1