【技术实现步骤摘要】
车辆越线判定方法、装置、计算机设备和存储介质
本申请涉及图像处理
,特别是涉及一种车辆越线判定方法、装置、计算机设备和存储介质。
技术介绍
随着图像处理技术的不断发展,图像处理技术越来越多地被用于车辆交通违章判定的应用场景之中,其中,机动车越线是交通违章中的一种常见类型,在交通违章的智能化判罚系统中,首先需要获得目标车辆位置信息,然后结合场景中车道线等环境信息,按一定的规则来判定车辆是否越线违章。然而,相关技术中使用目标检测矩形框来反映目标车辆位置的信息,车辆的目标检测框是指一个包含目标车辆的外接矩形,往往只能反映目标的整体位置属性,有时车辆的检测矩形框偏大一些,矩形框已经越过了车道线,可是实际上车辆的轮胎没有发生越线,而有时车辆检测矩形框也会偏小,矩形框没有越过车道线,可实际上车辆已经发生越线行为。针对相关技术中,车辆越线违章判定不准确的问题,目前尚未提出有效的解决方案。
技术实现思路
基于此,有必要针对上述技术问题,提供一种车辆越线判定方法、装置、计算机设备和存储介质。根据本专利 ...
【技术保护点】
1.一种车辆越线判定方法,其特征在于,所述方法包括:/n通过目标检测模型,获取目标图像中的车辆图像;/n根据关键点检测卷积神经网络对所述车辆图像进行检测,输出关键点;/n获取所述目标图像中的车道线,根据所述关键点与所述车道线的相对位置判断所述车辆图像中的车辆是否越线。/n
【技术特征摘要】
1.一种车辆越线判定方法,其特征在于,所述方法包括:
通过目标检测模型,获取目标图像中的车辆图像;
根据关键点检测卷积神经网络对所述车辆图像进行检测,输出关键点;
获取所述目标图像中的车道线,根据所述关键点与所述车道线的相对位置判断所述车辆图像中的车辆是否越线。
2.根据权利要求1所述的方法,其特征在于,所述根据关键点检测卷积神经网络,对所述车辆图像进行关键点检测,输出关键点包括:
根据关键点检测卷积神经网络,将所述车辆图像进行前向预测得到关键点的热力图,所述热力图的每一个通道代表一个关键点类型,所述通道中的峰值位置是与所述通道对应的所述关键点类型的关键点定位,输出所述关键点定位。
3.根据权利要求2所述的方法,其特征在于,所述热力图通道中的峰值位置是与所述热力图通道对应的所述关键点类型的关键点定位,输出所述关键点定位包括:
将各个所述通道的所述热力图归一化;
在第一通道的所述峰值位置数值小于或者等于第一阈值的情况下,判断与所述第一通道对应的关键点为不可见关键点;
在第一通道的所述峰值位置数值大于所述第一阈值的情况下,判断与所述第一通道对应的关键点为可见关键点;输出所述可见关键点。
4.根据权利要求1所述的方法,其特征在于,所述根据图像分割模型获取所述目标图像中的车道线,根据所述关键点与所述车道线的相对位置判断所述车辆图像中的车辆是否越线包括:
判断所述关键点是否位于所述车道线的不同侧,
若否,则所述车辆没有越线;
若有,分别获取第一关键点与所述车道线的第一距离,获取第二关键点与所述车道线的第二距离,根据所述第一距离和所述第二距离评估所述车辆的越线程度,其中,所述第一关键点和所述第二关键点分别为所述车道线的两侧距离所述车道线距离最远的所述关键点。
5.根据权利要求4所述...
【专利技术属性】
技术研发人员:罗振杰,
申请(专利权)人:浙江大华技术股份有限公司,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。