一种关联分析系统技术方案

技术编号:24683514 阅读:39 留言:0更新日期:2020-06-27 08:00
本发明专利技术公开了一种关联分析系统,其包括数据获取和分类模块、数值型事务处理模块、非数值型事务处理模块、概化数据处理模块和评估输出模块,数据获取和分类模块判断事务中是否含有非数值型数据,将数据分为数值型数据集与非数值型数据集,并分别将对应的数据发送给数值型事务处理模块和非数值型事务处理模块,非数值型事务处理模块将数据利用K‑means方法对非数值型事务集进行聚类分析,并将聚类分析结果发送给概化数据处理模块,数值型事务处理模块和概化数据处理模块对数据进行处理后将处理结果发送给评估输出模块进行结果输出。本发明专利技术具有很好的鲁棒性,可以有效解决电力负荷关联分析对数据类型及低频数据考虑不足的问题。

An association analysis system

【技术实现步骤摘要】
一种关联分析系统
本本专利技术涉及电力工程
,具体涉及一种关联分析系统。
技术介绍
当前我国用电需求不断增大,电力供需矛盾加剧,用电结构正在转型。随着电力市场的发展和电力技术水平的提升,负荷相关分析作为负荷评估预测的重要依据,是电力市场分析的基础工作之一,对于电力企业的经营和规划发展越来越重要。目前负荷分析主要依赖于业务人员的经验,主要手段是对负荷曲线的定性分析,且分析集中于负荷指标内部,缺乏对外部影响因素的实时获取及挖掘。同时用电信息采集系统、政府门户网站等电力系统内部外部信息化系统已被广泛应用,积累了大量的负荷分析基础数据,但尚未得到充分挖掘,进而影响了电力负荷曲线分析的精度。目前电力负荷分析多采用灰色关联分析方法或基本关联规则挖掘方法及其采用上述方法构成的系统。但在电力负荷关联分析中既存在数值型数据又存在非数值型的文本类数据。现有的电力负荷关联分析技术大多都不区分数据是否为数值型,只采用一种方法对电力负荷及其影响因素进行关联分析。此外,电力负荷关联分析中存在一些频率较低但重要性较强的数据,而利用传统关联规则挖掘算法的“支持度本文档来自技高网...

【技术保护点】
1.一种关联分析系统,包括数据获取和分类模块、数值型事务处理模块、非数值型事务处理模块、概化数据处理模块和评估输出模块,数据获取和分类模块判断事务中是否含有非数值型数据,将数据分为数值型数据集与非数值型数据集,并分别将对应的数据发送给数值型事务处理模块和非数值型事务处理模块,非数值型事务处理模块将数据利用K-means方法对非数值型事务集进行聚类分析,并将聚类分析结果发送给概化数据处理模块,数值型事务处理模块和概化数据处理模块对数据进行处理后将处理结果发送给评估输出模块进行结果输出。/n

【技术特征摘要】
1.一种关联分析系统,包括数据获取和分类模块、数值型事务处理模块、非数值型事务处理模块、概化数据处理模块和评估输出模块,数据获取和分类模块判断事务中是否含有非数值型数据,将数据分为数值型数据集与非数值型数据集,并分别将对应的数据发送给数值型事务处理模块和非数值型事务处理模块,非数值型事务处理模块将数据利用K-means方法对非数值型事务集进行聚类分析,并将聚类分析结果发送给概化数据处理模块,数值型事务处理模块和概化数据处理模块对数据进行处理后将处理结果发送给评估输出模块进行结果输出。


2.如权利要求1所述的关联分析系统,所述数据获取和分类模块:获取影响因素数据与负荷数据,计算影响因素数据与负荷数据的日平均值并按时间标签对影响因素数据与负荷数据进行匹配,组成事务,按影响因素是否为数值型数据,将数据分为数值型事务集与非数值型事务集。


3.如权利要求1所述的关联分析系统,所述数值型事务处理模块:利用基于熵权法的灰色关联分析方法,计算数值型事务集中影响因素对负荷数据的灰色关联度,同时设置关联度阈值,获取关联度大于阈值的数值型影响因素。


4.如权利要求1所述的关联分析系统,所述非数值型事务处理模块:利用K-means方法对非数值型事务集进行聚类分析,并将聚类分析结果发送给概化数据处理模块进行概化处理。


5.如权利要求1所述的关联分析系统,所述概化数据处理模块:基于FP-Growth算法对概化后的数据进行关联规则挖掘,筛选后项为负荷类型的关联规则,并对挖掘出的关联规则进行解读,得出各影响因素与负荷数据的关联关系,获取与负荷关系密切的非数值型影响因素。


6.如权利要求1所述的关联分析系统,所述评估输出模块:基于数值型事务处理模块的输出结果与非数值型事务处理模块的输出结果,输出与负荷数据关系密切的影响因素。


7.如权利要求2所述的...

【专利技术属性】
技术研发人员:田世明曹硕卜凡鹏李德智田英杰苏运石坤龚桃荣韩凝辉董明宇潘明明陈宋宋王李果
申请(专利权)人:中国电力科学研究院有限公司国网上海市电力公司国家电网有限公司
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1