【技术实现步骤摘要】
一种多维精细化控制污水处理系统
本技术涉及污水处理
,具体涉及一种多维精细化控制污水处理系统。
技术介绍
2011年全中国的工业废水和城镇生活污水排放总量为428.4亿吨,其中生活污水排放量达到227.7亿吨。2015年生活污水排放量增加到535.2亿吨(2015年全国环境状况公报),排放量保持较快增长趋势。依照2011-2015年的平均增速为6%,可以推测2020城镇生活污水排放量约达到700亿吨。生活污水和工业废水是水体中氮污染物的主要来源。大量含氮污染物排入受纳水体会破坏水体生态系统平衡,引起水体富营养化。因此,氮污染物的有效控制是当今污水处理领域的核心问题。随着能源危机的加剧和对水环境要求的提高,节能降耗是各行各业面临的重要需求。污水处理厂是高能耗行业,按照数据统计,中国污水处理平均能耗为0.29kW·h/m3,根据国家能源局发布的2014年全社会用电总量为55233亿kW·h,得到污水处理占全社会用电量的比例约为0.3%。随着污水处理厂建设的完善,未来对污水处理厂运行节能降耗需求会越来越强烈。因此,需 ...
【技术保护点】
1.一种多维精细化控制污水处理系统,其特征在于,包括顺次连通的厌氧池、缺氧池、好氧池和沉淀池,所述厌氧池具有进水口,所述沉淀池设有出水口;所述好氧池内设有曝气装置,且所述好氧池与所述缺氧池之间设有硝化液回流部件;所述沉淀池的底部设有排泥口以及连接所述厌氧池的污泥回流部件;/n还包括控制系统;所述厌氧池的进水口处设有进水流量计;所述好氧池内设有DO在线监测仪和氨氮在线监测仪;所述控制系统用于根据第一监测数据调控硝化液回流量和/或污泥回流量,以及根据第二监测数据调控曝气装置的运行;所述第一监测数据包括所述进水流量计的监测数据,所述第二监测数据包括所述DO在线监测仪的监测数据和所 ...
【技术特征摘要】
1.一种多维精细化控制污水处理系统,其特征在于,包括顺次连通的厌氧池、缺氧池、好氧池和沉淀池,所述厌氧池具有进水口,所述沉淀池设有出水口;所述好氧池内设有曝气装置,且所述好氧池与所述缺氧池之间设有硝化液回流部件;所述沉淀池的底部设有排泥口以及连接所述厌氧池的污泥回流部件;
还包括控制系统;所述厌氧池的进水口处设有进水流量计;所述好氧池内设有DO在线监测仪和氨氮在线监测仪;所述控制系统用于根据第一监测数据调控硝化液回流量和/或污泥回流量,以及根据第二监测数据调控曝气装置的运行;所述第一监测数据包括所述进水流量计的监测数据,所述第二监测数据包括所述DO在线监测仪的监测数据和所述氨氮在线监测仪的监测数据。
2.根据权利要求1所述的多维精细化控制污水处理系统,其特征在于,所述好氧池内设有至少两个分隔区,各分隔区依次连通,且各分隔区内设有曝气装置和DO在线监测仪;所述好氧池中沿水流方向末端的分隔区内设有氨氮在线监测仪,且所述好氧池中沿水流方向末端的分隔区与所述缺氧池之间设有硝化液回流部件。
3.根据权利要求2所述的多维精细化控制污水处理系统,其特征在于,所述控制系统用于根据第二监测数据调控曝气装置的运行包括:所述控制系统用于根据所述氨氮在线监测仪的监测数据控制曝气装置对各分隔区进行曝气的启停,并根据各DO在线监测仪的监测数据调控曝气装置向各分隔区的曝气强度;具体包括:
所述控制系统用于获取第二监测数据;所述第二监测数据包括所述DO在线监测仪的监测数据和所述氨氮在线监测仪的监测数据;
所述控制系统用于将所述氨氮在线监测仪的监测数据与预设的氨氮浓度控制范围进行对比判断;若所述氨氮在线监测仪的监测数据小于所述预设的氨氮浓度控制范围的下限值,所述控制系统驱动所述曝气装置停止向各分隔区中一个或多个进行曝气;若所述氨氮在线监测仪的监测数据大于预设的氨氮浓度控制范围的上限值,所述控制系统驱动曝气装置开启对各分隔区中一个或多个进行曝气;
所述控制系统用于将所述DO在线监测仪的监测数据与预设的溶解氧浓度控制范围进行对比判断;若分隔区的DO在线监测仪的监测数据小于所述预设的溶解氧浓度控制范围的下限值,所述控制系统驱动曝气装置增大向所述分隔区的曝气强度;若分隔区的DO在线监测仪的监测数据大于所述预设的溶解氧浓度控制范围的上限值,所述控制系统驱动曝气装置停止向所述分隔区曝气。
4.根据权利要求3所述的多维精细化控制污水处理系统,其特征在于,所述控制系统用于根据第二监测数据调控曝气装置的...
【专利技术属性】
技术研发人员:郭昉,刘波,吴毅晖,林阳,吴光学,李天乐,
申请(专利权)人:昆明滇池水务股份有限公司,清华大学深圳研究生院,
类型:新型
国别省市:云南;53
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。