一种基于生成对抗网络的时序评分预测方法技术

技术编号:24456627 阅读:56 留言:0更新日期:2020-06-10 15:44
本发明专利技术公开了一种基于生成对抗网络的时序评分预测方法,其包括以下步骤:S1、样本抽取以及时间特征提取;S2、构建生成对抗网络模型中的生成模型和鉴别模型;S3、基于时序的奇异值分解,得到加入时序信息的生成对抗网络模型;S4、基于生成对抗网络模型进行时序评分预测。本发明专利技术结合了时间序列信息以及生成对抗网络,将得到的新的时序评分预测方法应用到推荐系统中,实现长期有效的推荐,使得推荐精度有所提高。

A prediction method of time series score based on generative adversary network

【技术实现步骤摘要】
一种基于生成对抗网络的时序评分预测方法
本专利技术属于推荐系统
,具体涉及一种基于生成对抗网络的时序评分预测方法。
技术介绍
传统的推荐系统主要采用基于原始的矩阵分解方法的协同过滤,并没有考虑时间信息的作用;而时间信息作为一种重要的上下文信息,反映了用户行为的时间序列模式,也被一些研究者用于辅助推荐算法获得更高的预测精度。例如Netfilx竞赛中,Xiang等人提出了TimeSVD算法,该算法将时间效应加入到奇异值分解中去,有效的解决了兴趣偏移问题。但是时间信息大都应用于单次推荐,为了实现系统的长期有效推荐,需要提出新的推荐模型。生成对抗网络是2014年GoodFellow提出,结合了数学中极小极大博弈的思想,由生成模型和鉴别模型两部分组成,现已广泛应用于图像生成、多媒体等领域,且成熟模型高达380多个,在图像领域逐渐趋于饱和。IRGAN首次尝试将生成对抗网络应用于推荐系统,在推荐精度上有所提高,但是其仅仅使用的是传统协同过滤方法,并未考虑时间信息在推荐系统中的应用,导致时间信息的丢失,导致推荐效果没有达到最优,无法实现长期有效推荐。...

【技术保护点】
1.一种基于生成对抗网络的时序评分预测方法,其特征在于,包括以下步骤:/nS1、对原始数据进行样本抽取和时间特征提取,形成包含时间信息的数据集;/nS2、构建生成对抗网络模型中的生成模型和鉴别模型;/nS3、基于时序的奇异值分解,得到加入时序信息的生成对抗网络模型;/nS4、利用步骤S3得到的加入时序信息的生成对抗网络模型对步骤S1中包含时间信息的数据集进行时序评分预测。/n

【技术特征摘要】
1.一种基于生成对抗网络的时序评分预测方法,其特征在于,包括以下步骤:
S1、对原始数据进行样本抽取和时间特征提取,形成包含时间信息的数据集;
S2、构建生成对抗网络模型中的生成模型和鉴别模型;
S3、基于时序的奇异值分解,得到加入时序信息的生成对抗网络模型;
S4、利用步骤S3得到的加入时序信息的生成对抗网络模型对步骤S1中包含时间信息的数据集进行时序评分预测。


2.如权利要求1所述的基于生成对抗网络的时序评分预测方法,其特征在于,所述步骤S1包括以下分步骤:
S1-1、从原始数据库中进行样本抽取,将其按设定比例分为训练集和测试集,并生成特征索引;
S1-2、对数据集中的时间信息进行处理,获取数据集中最小时间戳min_time_stamp以及最大时间戳max_time_stamp,计算出整个数据集的时间跨度num;对于每一条数据,将其时间信息转化为min(num-1,time-min_time_stamp),记为t;
S1-3、将步骤S1-2处理后的时间信息t,结合项目编号i、用户编号u以及评分r组成新的数据集结构(u,i,r,t)。


3.如权利要求2所述的基于生成对抗网络的时序评分预测方法,其特征在于,所述步骤S2包括以下分步骤:
S2-1、生成对抗网络中生成模型以及鉴别模型的重定义,将生成模型定义为



其中gθ(u,i)表示生成器预测的用户u与项目i之间的评分,θ为生成模型参数;
将鉴别模型定义为



其中fφ(u,i)表示鉴别器在验证集的基础上计算出的用户u与项目i之间的评分,为鉴别模型参数;
S2-2、根据定义的生成模型以及鉴别模型,生成对抗网络目标函数为



其中E表示期望,x~pdata(x)表示变量x服从真实数据分布,D(i|u,r),G(i|u,r)分别表示生成模型和鉴别模型使用先验概率在给定用户和评分时项目i的概率;
S2-3、对生成对抗网络模型进行求解,相应的生成模型梯度为



其中θg表示生成模型参数,m表示项目总量;
鉴别器梯度为



S2-4、将鉴别模型梯度表示为



其中Φ表示鉴别模型参数,z~pz(z)表示变量z服从生成模型分布,Gθ(z)表示带有参数...

【专利技术属性】
技术研发人员:王庆先王超
申请(专利权)人:电子科技大学
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1