一种基于视频合成孔径雷达的干涉测量方法技术

技术编号:24329741 阅读:12 留言:0更新日期:2020-05-29 19:12
本发明专利技术属于雷达干涉测量技术,具体涉及一种基于视频合成孔径雷达的干涉测量方法。本发明专利技术的方法首先对合成孔径时间内接收到的子孔径数据进行成像,每个子孔径内将得到主、辅两幅图像,同时利用相邻多个子孔径图像的相干性,每个子孔径通过划分得到多组主、辅图像。单个子孔径内将每组主、辅图像通过精配准,对配准后的主、辅图像共轭相乘,得到干涉图,然后对干涉图进行滤波、去平地等操作,去除环境噪声及平地干扰,随后对得到的干涉图进行相位解缠,可计算出每组主辅图像得到的目标高程信息。对每个子孔径中的多组高程信息进行筛选、融合,得到最终的目标高程信息。本方法提高了数据使用效率,提高测量结果的精度,降低干涉测量成本。

An interferometry method based on video synthetic aperture radar

【技术实现步骤摘要】
一种基于视频合成孔径雷达的干涉测量方法
本专利技术属于雷达干涉测量技术,具体涉及一种基于视频合成孔径雷达的干涉测量方法。
技术介绍
合成孔径雷达干涉测量(InterferometricSyntheticApertureRadar,InSAR)技术得益于合成孔径雷达(SyntheticApertureRadar,SAR)技术的成熟和发展而簇生的一种高精度的对地观测技术。InSAR技术是基于SAR平台之上,它继承了SAR快速、全天时、全天候、高精度、大区域的突出优势,几乎不受天气、昼夜、气候的影响,在地表变形、地面形变监测、冰川移动、工程体(桥梁、大坝)变形等方面都具有独特优势。InSAR技术逐渐成为对地观测最主要的手段。利用InSAR技术快速获取高精度数字高程模型(DigitalElevationModel,DEM)是目前InSAR技术的主要应用之一。DEM的获取主要依靠SAR系统的两副天线(或者一副天线重复观测)来获取同一目标地区具有一定视交叉的两幅具有相干性的单视复数(SingleLookComplex,SLC)SAR图像,然后根据其干涉相位信息来提取地表的高程信息,并以此重建DEM。对于机载SAR系统来讲,由于飞行高度等因素制约,对目标成像时会出现叠掩、遮挡等因素导致相位缺失,使得测量结果精度降低;若采用重复观测的方式,不仅会大大提高测量成本,还难以保证叠掩、遮挡现象不会出现。现在使用的大多数SAR系统由于雷达工作载频等因素的限制,要达到一定方位向分辨率所需的合成孔径积累时间相对较长,即成像帧率低,对于机载SAR来讲,成像周期内飞机所处位置会发生较大变化,即使采用“一发双收”模式的SAR系统,在飞行时间内也只能获取有限的数据,使得测量效率大大降低。
技术实现思路
本专利技术的目的,就是针对上述存在的问题及不足,为了降低测量成本,提高测量精度,提出一种基于视频合成孔径雷达的数据混合干涉测量方法。该方法的基本思想是利用视频合成孔径雷达连续成像的优势,在对每个子孔径的主、辅图像进行干涉处理的同时对相邻子孔径成像结果进行交叉干涉处理,最大化利用数据结果。首先对每个子孔径的主、辅图像进行精配准、干涉、去平地、滤波、解缠,求出每个子孔径得到的高度信息。然后利用相邻子孔径的主、辅图像进行交叉配准,先对图像进行预配准,再进行精配准及后续步骤,干涉得到的高度信息以主图像所在子孔径为准,最后对多次生成的高度信息进行筛选、平均,最后得到较为精确的结果。本专利技术的技术方案为:一种基于视频合成孔径雷达的干涉测量方法,其特征在于,包括以下步骤:S1、采用机载视频合成孔径雷达系统获取目标信息,将视频合成孔径雷达的大孔径切分成S个子孔径,采用机载双天线方式进行干涉测量,每个子孔径内可以获得两幅SAR图像,分别定义为主、辅图像;并对所有子孔径成像先后顺序进行划分,划分间隔为成像最小积累时间,记为子孔径1,子孔径2,子孔径3…子孔径S;S2、对子孔径的成像结果进行以下处理:S21、采用最小二乘匹配方法对子孔径中的主、辅图像进行配准,具体为:设单个子孔径内主、辅图像分别为fi,j及gi,j,相关系数r(c,r)的计算公式为:其中,fi,j为主图像像元(i,j)的强度值;gi+r,j+c为辅图像相应像元(i,j)处的强度值;为主图像fi,j的均值,为辅图像gi,j的均值;M,N分别为匹配窗口的长度和宽度;选择主图像中任意一个像元(xi,yj),并以此为像元为中心,构建一个大小为M*M的匹配窗口,根据计算相关系数的计算公式,在辅图像中找到相关系数r(c,r)最大的点gi+r,j+c,并以此像元为中心,构造一个大小为N*N的搜索窗口;相关系数最大处得到的结果是在搜索区间内与像元(xi,yj)最为匹配的像元gi+r,j+c,并以此像元建立一个搜索窗口,为进一步配准做准备。设主图像像元(x1,y1)处的强度值为辅图像像元(x2,y2)处的强度值为设h0,h1为主辅图像之间的辐射畸变参数,且则基于最小二乘匹配方法要求满足∑vv最小,即求得参数h0及h1,使得结果最小。此处可将相关系数最大处得到的像元的图像强度值作为初值,带入上式中,作为最佳匹配点;然后在上述的M*M的匹配窗口内选择不同于(xi,yj)的任一像元点(xp,yq),不断重复最小二乘匹配方法,对于不同于(xi,yj)的任一像元点(xp,yq),都会在搜索窗口内找到与(xi,yj)相关系数最大的点(xp+e,yq+f),其图像强度值为gp+e,q+f,最后选择最接近最佳匹配点的若干组结果,带入下面坐标变换公式中:式中,a0,a1,a2,b0,b1,b2为几何畸变参数。将最大相关系数得到的匹配结果带入上式中,会得到多组方程组,将所有方程组联立,会得到多组几何畸变参数的值,将得到的参数值进行算术平均,得到最终的几何畸变参数。对辅图像的所有像元坐标按照坐标变换公式进行变换,得到配准后的辅图像,这样配准后进行干涉得到的干涉图才是高质量的。但是经过配准的不同栅格的像元并不总是对齐的,因为像元大小可能不同,或者像元边界之间会有相对的偏移。当进行栅格合并时,空间分析必须为每一个输出像元指定对应的输入栅格的像元,所以要进行重采样,这样才能得到准确的相位信息;S22、重采样及干涉图生成:对辅图像进行重采样,使每个像素点反映的是同一目标区域的相位信息,把主图像的复数值与辅图像的复数值进行共轭相乘,从而得到子孔径的干涉图;S23、采用多视均值滤波方法对干涉图滤波;S24、对干涉图去平地效应;S25、对干涉图进行相位解缠;S26、获取高程信息:以φ0表示干涉相位偏置,△φ表示解缠后的干涉相位,λ表示视频合成孔径雷达波长,则斜距差△R为:相应地面目标的高程值h为:其中H是雷达距离参考地面的垂直距离,R是主天线到目标的斜距,θ为主天线到目标的斜视角,α为主、辅天线间的水平夹角,△R为两天线到目标的斜距之差,B为主、辅天线间的距离;S3、相邻子孔径图像干涉:对相邻子空间主、辅图像进行组合,即选取某个子孔径i中主图像fi(i,j),同时选取前后相邻子孔径内的辅图像gi-1(i,j)及gi+1(i,j),构成新的主、辅图像,再根据步骤S2的方法获得高程信息,子孔径i会得到最多三组关于目标的高程值hi1,hi2,hi3,若子孔径得到的高程值个数为3时,选取中值作为子孔径的测量结果;若子孔径得到的高程值个数为2时,选择高程值的均值作为子孔径的测量结果,得到子孔径i最后的目标高程数据hi;S4、根据上述步骤获得所有子孔径的高程值hi后,最终目标高程信息h为:进一步的,步骤S22中所述重采样的具体方法为:采用双三次卷积法,利用内差点附近的16个原始数据点进行计算,设采样点为P(x,y),其中(x,y)是坐标且都不是整数,采用的卷积函数形式为:重采样公式为:其中,g(x,y)表示原采样点P(x,y)进行重采样之后的数值;g(本文档来自技高网
...

【技术保护点】
1.一种基于视频合成孔径雷达的干涉测量方法,其特征在于,包括以下步骤:/nS1、采用机载视频合成孔径雷达系统获取目标信息,将视频合成孔径雷达的大孔径切分成S个子孔径,采用机载双天线方式进行干涉测量,每个子孔径内可以获得两幅SAR图像,分别定义为主、辅图像;并对所有子孔径成像先后顺序进行划分,划分间隔为成像最小积累时间,记为子孔径1,子孔径2,子孔径3…子孔径S;/nS2、对子孔径的成像结果进行以下处理:/nS21、采用最小二乘匹配方法对子孔径中的主、辅图像进行配准,具体为:/n设单个子孔径内主、辅图像分别为f

【技术特征摘要】
1.一种基于视频合成孔径雷达的干涉测量方法,其特征在于,包括以下步骤:
S1、采用机载视频合成孔径雷达系统获取目标信息,将视频合成孔径雷达的大孔径切分成S个子孔径,采用机载双天线方式进行干涉测量,每个子孔径内可以获得两幅SAR图像,分别定义为主、辅图像;并对所有子孔径成像先后顺序进行划分,划分间隔为成像最小积累时间,记为子孔径1,子孔径2,子孔径3…子孔径S;
S2、对子孔径的成像结果进行以下处理:
S21、采用最小二乘匹配方法对子孔径中的主、辅图像进行配准,具体为:
设单个子孔径内主、辅图像分别为fi,j及gi,j,相关系数r(c,r)的计算公式为:



其中,fi,j为主图像像元(i,j)的强度值;gi+r,j+c为辅图像相应像元(i,j)处的强度值;为主图像fi,j的均值,为辅图像gi,j的均值;M,N分别为匹配窗口的长度和宽度;
选择主图像中任意一个像元(xi,yj),并以此为像元为中心,构建一个大小为M*M的匹配窗口,根据计算相关系数的计算公式,在辅图像中找到相关系数r(c,r)最大的点gi+r,j+c,并以此像元为中心,构造一个大小为N*N的搜索窗口;
设主图像像元(x1,y1)处的强度值为辅图像像元(x2,y2)处的强度值为设h0,h1为主辅图像之间的辐射畸变参数,且则基于最小二乘匹配方法要求满足∑vv最小,即求得参数h0及h1,使得结果最小,将相关系数最大处得到的像元的图像强度值作为初值,带入上式中,作为最佳匹配点;然后在上述的M*M的匹配窗口内选择不同于(xi,yj)的任一像元点(xp,yq),不断重复最小二乘匹配方法,对于不同于(xi,yj)的任一像元点(xp,yq),都会在搜索窗口内找到与(xi,yj)相关系数最大的点(xp+e,yq+f),其图像强度值为gp+e,q+f,最后选择最接近最佳匹配点的若干组结果,带入下面坐标变换公式中:



式中,a0,a1,a2,b0,b1,b2为几何畸变参数;将最大相关系数得到的匹配结果带入上式中,会得到多组方程组,将所有方程组联立,会得到多组几何畸变参数的值,将得到的参数值进行算术平均,得到最终的几何畸变参数;
S22、重采样及干涉图生成:对辅图像进行重采样,使每个像素点反映的是同一目标区域的相位信息,把主图像的复数值与辅图像的复数值进行共轭相乘,从而得到子孔径的干涉图;
S23、采用多视均值滤波方法对干涉图滤波;
S24、对干涉图去平地效应;
S25、对干涉图进行相位解缠;
S26、获取高程信息:以φ0表示干涉相位偏置,△φ表示解缠后的干涉相位,λ表示视频合成孔径雷达波长,则斜距差△R为:



相应地面目标的高程值h为:



其中H是雷达距离参考地面的垂直距离,R是主天线到目标的斜距,θ为主天线到目标的斜视角,α为主、辅天线间的水平夹角,△R为两天线到目标的斜距之差,B为主、辅天线间的距离;
S3、相邻子孔径图像干涉:对相邻子空间主、辅图像进行组合,即选取某个子孔径i中主图像fi(i,j),同时选取前后相邻子孔径内的辅图像gi-1(i,j)及gi+1(i,j),构成新的主、辅图像,再根据步骤S2的方法获得高程信息,子孔径i会得到最多三组关于目标的高程值hi1,hi2,hi3,若子孔径得到的高程值个数为3时,选取中值作为子孔径的测量结果;若子孔径得到的高程值个数为2时,选择高程值的均值作为子孔径的测量结果,得到子孔径i最后的目标...

【专利技术属性】
技术研发人员:李晋王浩闵锐皮亦鸣崔宗勇曹宗杰
申请(专利权)人:电子科技大学
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1