一种基于D-S证据理论的电力通信网网络异常检测方法技术

技术编号:24254290 阅读:98 留言:0更新日期:2020-05-23 01:05
本发明专利技术涉及电力通信网络领域,更具体地,涉及一种基于D‑S证据理论的电力通信网网络异常检测方法,该方法首先从电力通信网络中获取的数据中抽取关键性特征,然后基于K‑means聚类方法实现对D_S证据理论中识别框架中BBA的确定,而后利用专家经验或者专家系统对识别框架进行决定,最后使用Dempster组合规则进行融合以及决策。采用本发明专利技术的方法,能够有效提高电力通信网络中对网络异常及其类型感知准确性,同时可以根据实时数据实时融合实现网络异常实时检测。

An anomaly detection method of power communication network based on D-S evidence theory

【技术实现步骤摘要】
一种基于D-S证据理论的电力通信网网络异常检测方法
本专利技术涉及电力通信网络领域,更具体地,涉及一种基于D-S证据理论的电力通信网网络异常检测方法。
技术介绍
随着智能电网研究与实践的推进,传统意义上的电网正逐步与信息通信系统、监测控制系统相互融合,电力通信网安全和电网运行安全紧密相连,电力通信网安全为电网安全的重中之重。电力通信网络系统具有复杂性、动态性等特点,具有一定的脆弱性,而拒绝服务攻击、网络扫描、网络欺骗、病毒木马、信息泄露等安全事件的层出不穷,来自内外部的安全风险给网络安全工作带来了极大的压力与挑战,因此需要电力通信网网络异常检测技术,准确的识别出网络安全的异常事件以及如何实时确定网络是否处于异常状态,便于工作人员及时处理异常问题。现有的网络异常检测方法中,有一种方法是在D-S证据理论的基础上,可以综和多个特征对网络流量进行判定,并引入了自适应机制以保障检测的准确性。但该方案缺陷是未能结合主机数据特征进行判定,可能对于判定准确度有影响。
技术实现思路
本专利技术为克服上述现有技术中对于网络异常检本文档来自技高网...

【技术保护点】
1.一种基于D-S证据理论的电力通信网网络异常检测方法,其特征在于,包括以下步骤:/n步骤一:从电力通信网络中采集到的网络连接状况数据中选取影响网络异常的特征,进行数据预处理;/n步骤二:基于K-means聚类方法实现对D_S证据理论中识别框架中基本概率分配的确定;/n步骤三:利用专家系统对识别框架进行决定;/n步骤四:使用D-S证据理论组合规则进行融合以及决策。/n

【技术特征摘要】
1.一种基于D-S证据理论的电力通信网网络异常检测方法,其特征在于,包括以下步骤:
步骤一:从电力通信网络中采集到的网络连接状况数据中选取影响网络异常的特征,进行数据预处理;
步骤二:基于K-means聚类方法实现对D_S证据理论中识别框架中基本概率分配的确定;
步骤三:利用专家系统对识别框架进行决定;
步骤四:使用D-S证据理论组合规则进行融合以及决策。


2.根据权利要求1所述的一种基于D-S证据理论的电力通信网网络异常检测方法,其特征在于,在所述步骤一中,从电力通信网络中收集的网络关键信息的原始记录中,挑选固定时间长度的网络关键信息数据;并对挑选出的关键信息数据进行清洗,去除含有缺失值的数据记录。


3.根据权利要求2所述的一种基于D-S证据理论的电力通信网网络异常检测方法,其特征在于,所述关键信息数据包括三个信息,分别为流量信息、运行信息和网络防护设备的报警信息。


4.根据权利要求3所述的一种基于D-S证据理论的电力通信网网络异常检测方法,其特征在于,所述流量信息包括各个网络节点流量流入大小和网络流量流出大小。


5.根据权利要求3所述的一种基于D-S证据理论的电力通信网网络异常检测方法,其特征在于,所述运行信息包括各主机上运行的服务的总数、主机上运行的各项服务的平均访问量和访问频率。


6.根据权利要求3所述的一种基于D-S证据理论的电力通信网网络异常检测方法,其特征在于,所述网络防护设备的报警信息包括报警标识符、攻击频率、源地址、目的地址,源端口和目的端口。


7.根据权利要求2所述的一种基于D-S证据理论的电力通信网网络异常检测方法,其特征在于,在所述步骤二中,聚类区间以及聚类特征相似度的计算流程为:
S1:基于K-mean...

【专利技术属性】
技术研发人员:莫穗江高国华李瑞德王锋张欣欣温志坤黄定威杨玺张欣汤铭华梁英杰廖振朝陈嘉俊李伟雄童捷张天乙
申请(专利权)人:广东电网有限责任公司广东电网有限责任公司江门供电局
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1