一种基于视觉感知机制的电气设备图像自动生成方法技术

技术编号:24252829 阅读:46 留言:0更新日期:2020-05-23 00:14
本发明专利技术提供一种基于视觉感知机制的电气设备图像自动生成方法,包括:(1)对用户图片进行交互式预处理;(2)对步骤(1)得到的输入图像进行灰度变换,得到灰度图像;(3)利用二元高斯核对灰度图像进行高斯平滑处理,进一步去除目标物体噪声,得到输入高斯梯度图像;(4)计算输入图像外区抑制量;(5)计算获得各级抑制后响应;(6)利用Canny算子对各级抑制后响应进行边缘检测,得到边缘集合;(7)计算所有边缘集合的交集和并集,并以交集作为种子点在并集中选择强边缘;(8)二值化概率图得到感兴趣物体轮廓;(9)后处理得到电气设备图像。本发明专利技术可自动快速地生成图像中目标物体的轮廓和特征线条,从而自动生成电气设备图像。

An automatic image generation method of electrical equipment based on visual perception mechanism

【技术实现步骤摘要】
一种基于视觉感知机制的电气设备图像自动生成方法
本专利技术涉及机器视觉
,具体是一种基于视觉感知机制的电气设备图像自动生成方法。
技术介绍
智能电网建设到如今,智能巡视已经越来越广泛的应用到电力业务过程中,如何让计算机能快速识别电气一二次设备位置状态是智能巡检的重中之重,利用巡视中摄像机提取被测对象的影像文件,比对综合判断变电站的运行状态,这需要智能设备能够对图像进行处理,自动生成目标物体的轮廓或简易线条,并且这些轮廓或简易线条能够形象地勾画出目标物体的主要特征。针对上述问题,本专利技术提出一种通用的基于视觉感知机制的电气设备图像自动生成方法,可以快速有效地生成目标物体的轮廓和特征线条。
技术实现思路
本专利技术的目的在于提供一种基于视觉感知机制的电气设备图像自动生成方法,其目的在于利用图像处理技术自动快速地生成图像中目标物体的轮廓和特征线条,方便人们模仿,用电气设备简单形象地表达目标物体的主要特征。实现本专利技术目的所采用的具体技术方案如下:一种基于视觉感知机制的电气设备图像自动生成方法,包括以下步骤:(1)对用户图片进行交互式预处理,用户在图片区域以任意形状选取图片感兴趣区域,去除背景噪声,确定目标物体,得到输入图像;(2)对步骤(1)得到的输入图像进行灰度变换,得到灰度图像;(3)利用二元高斯核对灰度图像进行高斯平滑处理,进一步去除目标物体噪声,得到输入高斯梯度图像;(4)根据人类视觉感知机制,利用一组旋转不变滤波器作为外区抑制核函数对步骤(3)得到的输入高斯梯度图像进行卷积,计算输入图像外区抑制量;(5)根据步骤(3)的高斯梯度图和步骤(4)得到的输入图像外区抑制量,利用多水平抑制参数,计算获得各级抑制后响应;(6)利用Canny算子对各级抑制后响应进行边缘检测,得到边缘集合;(7)计算所有边缘集合的交集和并集,并以交集作为种子点在并集中选择强边缘;(8)根据马尔科夫随机场理论建立轮廓概率图,二值化概率图得到感兴趣物体轮廓;(9)用户根据自动生成的感兴趣物体轮廓进行擦除或连接操作,进一步去除噪声或对轮廓进行增强,得到满意的电气设备图像。进一步的,步骤(3)所述的高斯平滑处理中的二元高斯核公式为:式中,(x,y)为高斯核中元素的模版坐标(模版中心位置为原点),σ为高斯核的方差。进一步的,步骤(4)所述的输入图像外区抑制量的计算过程为:第一步,选取一组不变滤波器,其生成函数定义为:式中,n∈{-2,0,2};为(x,y)的极坐标形式;θ表示旋转角度;an(θ)=exp(inθ);Vn定义为:第二步,令Kθ(x,y)与输入高斯梯度图像作卷积即可得到输入图像外区抑制量t(x,y),为式中,θ表示梯度方向。进一步的,步骤(5)所述的各级抑制响应的计算公式为:式中,表示经过高斯平滑后的梯度图像,(x,y)为图像中像素点坐标,λ为多水平抑制参数,λ∈{0,1,2,3,4}。进一步的,步骤(7)所述的强边缘选择过程为:第一步,对于不同抑制水平λk作用下的二值图像b(p,λk),根据以下公式分别计算其交集Bp,i和并集Bp,u:Bp,u=k=0nb(p,λk)第二步,以交集作为种子轮廓,遍历并集中所有的弱边缘Eu,如弱边缘Eu与种子轮廓有部分像素点发生重叠,则将弱边缘Eu加入到组合结果b(p,c)中,有:其中,进一步的,步骤(8)所述的根据马尔科夫随机场理论建立轮廓概率图具体过程为:第一步,假设步骤(7)得到的强边缘组合结果b(p,c)满足马尔科夫随机场分布;第二步,定义b(p,c)中每条轮廓e为目标轮廓的概率为:式中,emax表示b(p,c)中的最长轮廓;L(*)表示轮廓长度;第三步,根据马尔科夫随机场理论计算轮廓点概率p(x,y,r):其中,w(x,y,e)=[1-δ(e∩U(x,y,r))],U(x,y,r)表示轮廓点(x,y)的r邻域。;第四步,设定阈值Tp,感兴趣物体的最终轮廓输出b(x,y)定义为:b(x,y)=p(x,y,r)>Tp。本专利技术的电气设备自动生成方法根据人类视觉系统可以减弱视神经元对纹理性边缘响应的外区抑制特性,利用基于外区抑制特性的仿生轮廓检测方法,在提取图像中感兴趣对象的候选轮廓的同时,有效抑制纹理性边缘,并结合马尔科夫随机场对候选轮廓进行概率图建模,进一步去除噪声边缘,筛选出有效的目标轮廓,从而自动生成电气设备图像,为智能辅助决策系统提供帮助。该专利技术的方法可用于智能电网送电、变电、配电终端等图像识别领域。附图说明图1为本专利技术实施例的一种基于视觉感知机制的电气设备图像自动生成方法的流程示意图;图2为本专利技术实施例的输入图像;图3为本专利技术实施例的灰度变换图像;图4为本专利技术实施例的高斯滤波图像;图5为本专利技术实施例的多水平抑制图像;图6为本专利技术实施例的强边缘选取图像;图7为本专利技术实施例的马尔科夫建模后处理图像。具体实施方式为了使本专利技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本专利技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本专利技术,并不用于限定本专利技术。请参阅图1,本专利技术实施例提供一种基于视觉感知机制的电气设备图像自动生成方法,包括以下步骤:(1)对用户图片进行交互式预处理,用户在图片区域以任意形状选取图片感兴趣区域,去除背景噪声,确定目标物体,得到输入图像;(2)对步骤(1)得到的输入图像进行灰度变换,得到灰度图像;(3)利用二元高斯核对灰度图像进行高斯平滑处理,进一步去除目标物体噪声,得到输入高斯梯度图像;其中,所述的高斯平滑处理中的二元高斯核公式为:式中,(x,y)为高斯核中元素的模版坐标(模版中心位置为原点),σ为高斯核的方差。(4)根据人类视觉感知机制,利用一组旋转不变滤波器作为外区抑制核函数对步骤(3)得到的输入高斯梯度图像进行卷积,计算输入图像外区抑制量;其中所述的输入图像外区抑制量的计算过程为:第一步,选取一组不变滤波器,其生成函数定义为:式中,n∈{-2,0,2};为(x,y)的极坐标形式;θ表示旋转角度;an(θ)=exp(inθ);Vn定义为:第二步,令Kθ(x,y)与输入高斯梯度图像作卷积即可得到输入图像外区抑制量t(x,y),为式中,θ表示梯度方向。(5)根据步骤(3)的高斯梯度图和步骤(4)得到的输入图像外区抑制量,利用多水平抑制参数,计算获得各级抑制后响应;其中所述的各级抑制响应的计算公式为:式中,表示经过高斯平滑后的梯度图像,(x,y)为图像中像素点坐标,λ为多水平抑制参本文档来自技高网...

【技术保护点】
1.一种基于视觉感知机制的电气设备图像自动生成方法,其特征在于,包括以下步骤:/n(1)对用户图片进行交互式预处理,用户在图片区域以任意形状选取图片感兴趣区域,去除背景噪声,确定目标物体,得到输入图像;/n(2)对步骤(1)得到的输入图像进行灰度变换,得到灰度图像;/n(3)利用二元高斯核对灰度图像进行高斯平滑处理,进一步去除目标物体噪声,得到输入高斯梯度图像;/n(4)根据人类视觉感知机制,利用一组旋转不变滤波器作为外区抑制核函数对步骤(3)得到的输入高斯梯度图像进行卷积,计算输入图像外区抑制量;/n(5)根据步骤(3)的高斯梯度图和步骤(4)得到的输入图像外区抑制量,利用多水平抑制参数,计算获得各级抑制后响应;/n(6)利用Canny算子对各级抑制后响应进行边缘检测,得到边缘集合;/n(7)计算所有边缘集合的交集和并集,并以交集作为种子点在并集中选择强边缘;/n(8)根据马尔科夫随机场理论建立轮廓概率图,二值化概率图得到感兴趣物体轮廓;/n(9)用户根据自动生成的感兴趣物体轮廓进行擦除或连接操作,进一步去除噪声或对轮廓进行增强,得到满意的电气设备图像。/n

【技术特征摘要】
1.一种基于视觉感知机制的电气设备图像自动生成方法,其特征在于,包括以下步骤:
(1)对用户图片进行交互式预处理,用户在图片区域以任意形状选取图片感兴趣区域,去除背景噪声,确定目标物体,得到输入图像;
(2)对步骤(1)得到的输入图像进行灰度变换,得到灰度图像;
(3)利用二元高斯核对灰度图像进行高斯平滑处理,进一步去除目标物体噪声,得到输入高斯梯度图像;
(4)根据人类视觉感知机制,利用一组旋转不变滤波器作为外区抑制核函数对步骤(3)得到的输入高斯梯度图像进行卷积,计算输入图像外区抑制量;
(5)根据步骤(3)的高斯梯度图和步骤(4)得到的输入图像外区抑制量,利用多水平抑制参数,计算获得各级抑制后响应;
(6)利用Canny算子对各级抑制后响应进行边缘检测,得到边缘集合;
(7)计算所有边缘集合的交集和并集,并以交集作为种子点在并集中选择强边缘;
(8)根据马尔科夫随机场理论建立轮廓概率图,二值化概率图得到感兴趣物体轮廓;
(9)用户根据自动生成的感兴趣物体轮廓进行擦除或连接操作,进一步去除噪声或对轮廓进行增强,得到满意的电气设备图像。


2.根据权利要求1所述的一种基于视觉感知机制的电气设备图像自动生成方法,其特征在于,步骤(3)所述的高斯平滑处理中的二元高斯核公式为:



式中,(x,y)为高斯核中元素的模版坐标(模版中心位置为原点),σ为高斯核的方差。


3.根据权利要求1所述的一种基于视觉感知机制的电气设备图像自动生成方法,其特征在于,步骤(4)所述的输入图像外区抑制量的计算过程为:
第一步,选取一组不变滤波器,其生成函数定义为:



式中,n∈{-2,0,2};为(x,y)的极坐标形式;θ表示旋转角度;an(θ)=exp(inθ);Vn定义为:



第二步,令Kθ(x,y)与输入高斯...

【专利技术属性】
技术研发人员:王晋
申请(专利权)人:国网湖北省电力有限公司电力科学研究院国家电网有限公司
类型:发明
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1