本发明专利技术公开了一种图片检索方法,对处理图片分别进行DCT计算和DWT计算得到第一组哈希码,旋转处理图片分别在90°、180°和270°上进行DCT计算和DWT计算得到第二组哈希码、第三组哈希码和第四组哈希码,基于四组哈希码计算并构建NB+树,并组合成为随机森林模型,使用随机森林模型进行图片检索。使用了分块DCT和DWT技术来构造图片的感知哈希码,加速了哈希码的构造过程;依据不同旋转角度的图片来构造决策树,提高了图片检索的准确性;使用了归一化的B+树将高维输入向量减少至一维,显著改善了时间复杂度;使用随机森林模型,结合图片旋转、DCT和DWT的哈希码等多个决策来提高检索的速度和性能。
A method of image retrieval
【技术实现步骤摘要】
一种图片检索方法
本专利技术属于图像检索
,具体地说,是涉及一种图片检索方法。
技术介绍
随着图形硬件、计算机技术与互联网技术的高速发展,大规模的图片数据已经广泛应用于人类的各种生产活动之中,随之带来的问题是:如何加快图像检索速度,对海量图片数据进行高效的检索。目前的图片检索技术主要分为两大类,一类是基于文本的图片检索,即利用文本标注的方式去描述图片信息,主要是通过人工去给图片加上标签,此种图片检索技术实质上是文字检索的方法,同时此类方法也带来一些弊病:人工标注主观性强、消耗大量人力物力等;另一类是基于内容的图片检索,该类方法利用图片的一些内容特征来进行检索,如图片的颜色、纹理、布局等信息,目前已取得了一些进展。另外,较为复杂的基于内容的图片检索开始使用神经网络提供的高维度的特征向量,在检索准确度方面也取得了进步。基于内容的图片检索技术之规模,通常会远大于纯粹的文字标签信息,此时可以借助哈希算法;哈希算法可将高维度特征向量映射成紧凑而表达能力较强的二进制码,局部敏感哈希算法可以用于海量高维数据的近似最近邻快速查找,可以将相似度较高的特征向量映射成汉明距离较小的二进制码,可以极大地加速图片相似度计算过程。目前局部敏感哈希算法已在基于内容的图像检索领域取得了较大的发展,如:Google、Baidu、Bing、Yahoo等众多搜索引擎都已推出了自己的搜图引擎。海量图片相似度计算问题一直是基于内容的图像检索领域的重要问题之一,即使使用局部敏感哈希算法可以极大地加速检索过程,但当数据量指数式上升时,依旧会严重地影响到检索效率,同时也会需要相当的硬件支持。当然也可以通过使用简单的浅层图片特征信息来提升检索速度,但此时检索速度的提升是以降低检索准确度为代价的。可以说目前还尚未拥有一个两全其美的解决方案。大规模图片检索目前面临的挑战主要是:1)如何对数据库中图片进行适当的描述并提取出区分度较高的特征,这将直接影响到对特征相似性的度量和检索结果的准确与否;2)以在保证一定的检索准确度的前提下,还要考虑计算量和计算复杂度的问题,将检索速度控制在可以人们接受的范围内;3)特别的,当图片数据量达到一定量级时,图片特征的复杂程度会极大地影响检索时间,同时也会对硬件提出更高的要求。
技术实现思路
本专利技术的目的在于提供一种图片检索方法,基于随机森林和图像感知哈希的图片检索框架,具有速度快、性能高等优点,并且该框架随着数据库的规模增加而保持快速缩放,使得海量图片检索更加高效。本专利技术采用以下技术方案予以实现:提出一种图片检索方法,包括:获取处理图片;对所述处理图片分别进行DCT计算和DWT计算得到第一组哈希码;旋转所述处理图片分别在90°、180°和270°上进行DCT计算和DWT计算得到第二组哈希码、第三组哈希码和第四组哈希码;基于四组哈希码计算并构建NB+树,并组合成为随机森林模型;使用所述随机森林模型进行图片检索。进一步的,在获取处理图片之前,所述方法还包括:对图片进行预处理得到所述处理图片;所述预处理包括:转换为灰度图,以及以设定重叠率对图片进行分割。进一步的,对所述处理图片分别进行DCT计算和DWT计算得到第一组哈希码,具体包括:对处理图片进行DCT和DWT变换,将所得到的除最低频率之外的所有低频系数求均值;基于得到哈希码;其中,Ai为第i块被分割的图的低频系数的平均值,m为各块低频系数平均值的中位数。进一步的,基于四组哈希码计算并构建NB+树,并组合成为随机森林模型,具体为:对DWT计算得到的四组哈希码使用Kronecker张量积算子进行计算并得到Key值;对DCT计算得到的四组哈希码分别采样得到Key值;将得到的Key值插入到相应的NB+树中;用各组NB+树组合成为随机森林。进一步的,将得到的Key值插入到相应的NB+树中,具体为:将Key值插入到NB+树的内部节点;以及,将哈希码插入到NB+树的叶节点。进一步的,用各组NB+树组合成为随机森林,具体包括:使用DWT计算的哈希码的高位部分和低位部分构成2棵树;以及,使用四组哈希码构成4棵树。进一步的,使用所述随机森林模型进行图片检索,具体包括:计算图片的哈希码和Key值;对随机森林中的各组内决策树的结果进行多数检测户取并集,得到检索结果。进一步的,图片进行分割,具体为:对转换为灰度图的图片进行分割,分块数量分别为32块和128块;则对所述处理图片分别进行DCT计算和DWT计算得到第一组哈希码,具体为:对32块分割图进行DCT计算;以及,对128块分割图进行DWT计算。与现有技术相比,本专利技术的优点和积极效果是:本专利技术提出的图片检索方法,使用了分块DCT技术和分块DWT技术来构造图片的感知哈希码,加速了哈希码的构造过程;将图片进行四个角度的旋转,依据不同旋转角度的图片来构造决策树,提高了图片检索的准确性;使用了归一化的B+树,也即NB+树,将高维输入向量减少至一维,显著改善了时间复杂度;使用随机森林模型,结合图片旋转、DCT和DWT的哈希码等多个决策来提高检索的速度和性能。结合附图阅读本专利技术实施方式的详细描述后,本专利技术的其他特点和优点将变得更加清楚。附图说明图1为本专利技术提出的图片检索方法的流程图;图2为基于本专利技术提出的图片检索方法中哈希码构造和Key值计算示意图;图3为本专利技术提出的图片检索方法中构造的随机森林模型示意图。具体实施方式下面结合附图对本专利技术的具体实施方式作进一步详细的说明。下面以一个具体的实施例对本专利技术提出的图片检索方法做出详细说明。首先是关于数据库索引构建的过程,也是图片检索的重要步骤之一,当给定待检索的数据库时,需要对数据库中数据进行处理和建立索引,使其可以量化并作为衡量检索效果的标准。如图1所示,步骤S11:将图片进行预处理得到处理图片。将数据库中图片进行预处理,调整图片格式、大小、比例,并对每张图片做灰度图转换。对灰度图进行分割,分割时保证块与块之间具有设定重叠率,例如50%的重叠率,以减少分块带来的边界效应。分块大小由期望哈希码长度决定。步骤S12:对处理图片分别进行DCT(离散余弦变换)计算和DWT(离散小波变换)计算得到第一组哈希码。将灰度图分割为32块,对32块图进行分块DCT变换,每块得到变换后的低频系数,将除最低频率外的低频系数求取平均并连接成向量,再求取各个块低频系数平均值的中位数m,此时一张图片的哈希码可被如下算式计算为:其中,Ai为第i块被分割的图的低频系数的平均值;将所有块的f(.)值连接起来即为期望得到的第一哈希码。再将灰度图分割为128块,对128块图进行分块DWT变换,按照上述方式得到第二哈希码。第一哈希码和第二哈希码组成第一组哈希码。步骤S13:旋转处理图片分别在90°、180°和270°上进行DCT计算和DWT计算得到第二组哈希码、第三组哈希码和第四组哈本文档来自技高网...
【技术保护点】
1.一种图片检索方法,其特征在于,包括:/n获取处理图片;/n对所述处理图片分别进行DCT计算和DWT计算得到第一组哈希码;/n旋转所述处理图片分别在90°、180°和270°上进行DCT计算和DWT计算得到第二组哈希码、第三组哈希码和第四组哈希码;/n基于四组哈希码计算并构建NB+树,并组合成为随机森林模型;/n使用所述随机森林模型进行图片检索。/n
【技术特征摘要】
1.一种图片检索方法,其特征在于,包括:
获取处理图片;
对所述处理图片分别进行DCT计算和DWT计算得到第一组哈希码;
旋转所述处理图片分别在90°、180°和270°上进行DCT计算和DWT计算得到第二组哈希码、第三组哈希码和第四组哈希码;
基于四组哈希码计算并构建NB+树,并组合成为随机森林模型;
使用所述随机森林模型进行图片检索。
2.根据权利要求1所述的图片检索方法,其特征在于,在获取处理图片之前,所述方法还包括:
对图片进行预处理得到所述处理图片;
所述预处理包括:转换为灰度图,以及以设定重叠率对图片进行分割。
3.根据权利要求2所述的图片检索方法,其特征在于,对所述处理图片分别进行DCT计算和DWT计算得到第一组哈希码,具体包括:
对处理图片进行DCT和DWT变换,将所得到的除最低频率之外的所有低频系数求均值;
基于得到哈希码;
其中,Ai为第i块被分割的图的低频系数的平均值,m为各块低频系数平均值的中位数。
4.根据权利要求1所述的图片检索方法,其特征在于,基于四组哈希码计算并构建NB+树,并组合成为随机森林模型,具体为:
对DWT计算得到的四组哈希码使用Kronecker张量积算子进...
【专利技术属性】
技术研发人员:魏志强,殷波,苏育挺,聂为之,刘安安,
申请(专利权)人:青岛海洋科学与技术国家实验室发展中心,
类型:发明
国别省市:山东;37
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。