一种基于非均匀量化的不确定多智能体系统一致性控制方法技术方案

技术编号:24119040 阅读:13 留言:0更新日期:2020-05-13 02:32
一种基于非均匀量化的不确定多智能体系统一致性控制方法,为多智能体系统中各个智能体建立具有量化输入、未建模动态和动态扰动的非线性动力学模型;利用输入‑状态指数稳定性原理将未建模动态及动态扰动项里的未建模项与状态项之间的耦合关系进行解耦分离出独立的未建模动态项和状态项;将量化输入项分解为具有权重系数的输入项的代数表达式;结合自适应神经网络方法与backstepping技术对简化后的智能体模型进行控制器设计;利用Lyapunov稳定性理论给出一致性收敛和稳定性条件;根据收敛和稳定性条件给出控制参数选取规则,以达到一致性量化控制效果。本发明专利技术降低了网络化控制系统的通信负担,达到较好的鲁棒性控制效果。

【技术实现步骤摘要】
一种基于非均匀量化的不确定多智能体系统一致性控制方法
本专利技术涉及一种高阶不确定多智能体系统一致性控制技术,特别涉及一种具有未建模动态和动态不确定扰动特性的严格反馈多智能体输入量化一致性控制方法。
技术介绍
随着控制技术、通信技术、计算机网络技术、生物科学技术和人工智能技术的不断发展,其交叉学科——多智能体系统的控制研究引起学者广泛关注。智能体之间通过相互协作共同完成一项单个个体无法单独完成的复杂群体任务,因此,多智能体的协同控制研究一直是多智能体研究领域的重点。而一致性控制又是协同控制研究的关键和基础。近年来一致性控制研究已经取得了很多可喜成果。这些成果主要集中于一阶、二阶和模型简单的高阶系统一致性控制。随着控制工程的不断发展和人们需求的日益增长,需要研究的被控对象越来越复杂。比如大型航空航天系统的建模状态变量可达上千个,而实际建模时往往作必要的简化处理,导致部分环节未被建模。如果在控制设计时忽略这些未建模动态部分影响,会导致系统不稳定甚至崩溃。同时,多智能体网络控制系统的信息交互依赖于智能体之间实时连续的交换。受通信带宽约束,实际上的信息交流往往不那么令人满意,这将导致依赖实时连续信息交流的多智能体一致性控制在实际网络调节下难以精确实施。量化技术作为一种信息压缩的有效方法,已经成功应用在各种通信系统。主要有均匀量化和非均匀量化两种方式。磁滞量化是一种非均匀量化,是指将输入信号根据控制需求不均匀分割的量化技术。相比于均匀量化,此量化方法具有可调节的量化精度,避免信号抖振现象。因此,此量化方式更适合应用在实际通讯系统。因此,设计一种更符合实际应用需求的多智能体一致性控制方法,以减少网络带宽负荷同时对未建模动态和不确定扰动具有一定鲁棒性,是目前多智能体一致性研究迫切需要解决的问题。
技术实现思路
本专利技术的目的在于提供一种针对具有未建模动态和动态扰动的不确定性多智能体系统一致性量化控制方法,以解决上述背景中提出的问题。为实现上述专利技术方法,本专利技术提供的技术方案如下:一种基于非均匀量化的不确定多智能体系统一致性控制方法,包括以下步骤:步骤1:建立具有未建模动态、动态扰动和磁滞型量化输入的连续型非线性高阶多智能体系统数学模型,第j个智能体的动力学方程为:其中,z是未建模动态,Δj,i是动态扰动项,fj,i和gj,i是非线性不确定项,yj是输出项,qj(uj)是量化器,取输入信号uj的量化值,表达形式如式(2);给定领导者参考信号为yr,为所有智能体系统的期望输出;步骤2:对未建模动态、动态扰动和输入量化项分别进行一系列简化处理,包括以下步骤:21)利用输入-状态指数稳定条件,对未建模动态和动态扰动项进行处理,分离出未建模动态项和状态项;22)对步骤1给出的磁滞量化输入模型,给出一种新的分解方法,分离出控制输入项uj(t),即其中gj(uj)为量化权重系数,为类似扰动项,满足1-δj≤gj(uj)≤1+δj,步骤3:根据步骤2给出的量化器分解形式对步骤1的多智能体模型设计自适应神经网络一致性控制协议,包括以下步骤;31)首先给出基于图论的误差动态面方程:zj,i=xj,i-αj,i-1(4)其中,aj,i和bj分别是由拓扑结构决定的邻接矩阵和度矩阵的元素,αj,i-1是待设计虚拟控制信号;32)利用backstepping设计方法并结合神经网络逼近特性进行第1步虚拟控制器设计,首先对误差信号zj,1求导,然后对递推过程产生的一系列未知不确定项进行神经网络逼近,并进行一系列不等式化简,最后根据Lyapunov函数法得到虚拟控制器和参数估计表达式分别为:其中,Sj,1(Xj,1)是神经网络基函数向量,ρj,1、σj,1和τj,1分别是设计参数;33)采用步骤32)的设计方法,不断递推,得到第i步的虚拟控制器和参数估计表达式:其中,Sj,i(Xj,i)是神经网络基函数向量,ρj,i、σj,i和τj,i分别是设计参数;34)得出实际控制信号uj表达为步骤4:针对步骤1建立的具有未建模动态、动态扰动以及输入量化的非线性多智能体模型和步骤3设计的自适应神经网络一致性控制协议,利用Lyapunov第二稳定性条件给出一致性收敛和稳定性条件;步骤5:根据步骤4中给出的一致性收敛和稳定性条件,给出控制选取的规则;步骤6:将步骤5设计的控制参数选取代入到步骤3的控制协议中,实现对具有未建模动态和动态扰动的多智能体系统的一致性量化控制。进一步,所述步骤5中,控制选取的规则如下:51)选取决定量化器量化性能的参数为0<δj<1,0<uj,min<1;52)对于给定的V(z)和q(yj,z,t),选取决定未建模动态信号r的正参数c,d满足53)选取控制设计参数满足:τj,1>0,kj,i>0,τj,i>0,ρj,i>0,σj,i>0;54)选取实际控制器参数为:kj,n>0,τj,n>0,ρj,n>0,σj,n>0。本专利技术的技术构思为:首先为多智能体系统中各个智能体建立具有量化输入、未建模动态和动态扰动的非线性动力学模型;然后利用输入-状态指数稳定性原理将未建模动态及动态扰动项里的未建模项与状态项之间的耦合关系进行解耦分离出独立的未建模动态项和状态项;然后将量化输入项分解为具有权重系数的输入项的代数表达式;其次结合自适应神经网络方法与backstepping技术对简化后的智能体模型进行控制器设计;再次利用Lyapunov稳定性理论给出一致性收敛和稳定性条件;最后根据收敛和稳定性条件给出控制参数选取规则,以达到一致性量化控制效果。本专利技术与已有技术相比,有益效果为:本专利技术的自适应神经网络控制方法考虑了一类具有未建模动态、动态扰动和输入量化特性的一致性控制问题,与现有的非线性多智能体一致性控制方法相比,本专利技术可以解决多智能体的量化输入问题,在不影响控制效果的情况下,仅需要有限的量化值进行控制设计,这大大降低了网络化控制系统的通信负担,避免了因带宽约束等问题带来的不理想的控制效果。而且,该专利技术方法对于具有未建模动态和动态扰动的不确定性系统,在无需知道不确定项参数表达的情况下,能够根据神经网络的万能逼近特性,达到较好的鲁棒性控制效果。附图说明图1为本专利技术方法的流程图。图2为本专利技术的一个包含四个智能体节点的多智能体系统拓扑结构图。图3为三个跟随节点和一个领导节点的轨迹输出图。图4为三个跟随节点的一致性跟踪误差曲线图。图5为跟随节点1的控制输入信号和经量化后的控制信号。图6为跟随节点2的控制输入信号和经量化后的控制信号。图7为跟随节点3的控制输入信号和经量化后的控制信号。具体实施方式下面结合附图对本专利技术做进一步的详细说明。参照图1~图7,一种具有非均匀量化的不确定多智能体系统一致性控本文档来自技高网
...

【技术保护点】
1.一种基于非均匀量化的不确定多智能体系统一致性控制方法,其特征在于,所述方法包括以下步骤:/n步骤1:建立具有未建模动态、动态扰动和磁滞型量化输入的连续型非线性高阶多智能体系统数学模型,第j个智能体的动力学方程为:/n

【技术特征摘要】
1.一种基于非均匀量化的不确定多智能体系统一致性控制方法,其特征在于,所述方法包括以下步骤:
步骤1:建立具有未建模动态、动态扰动和磁滞型量化输入的连续型非线性高阶多智能体系统数学模型,第j个智能体的动力学方程为:



其中,z是未建模动态,Δj,i是动态扰动项,fj,i和gj,i是非线性不确定项,yj是输出项,qj(uj)是量化器,取输入信号uj的量化值,表达形式如式(2);给定领导者参考信号为yr,为所有智能体系统的期望输出;



步骤2:对未建模动态、动态扰动和输入量化项分别进行一系列简化处理,包括以下步骤:
21)利用输入-状态指数稳定条件,对未建模动态和动态扰动项进行处理,分离出未建模动态项和状态项;
22)对步骤1给出的磁滞量化输入模型,给出一种新的分解方法,分离出控制输入项uj(t),即其中gj(uj)为量化权重系数,为类似扰动项,满足1-δj≤gj(uj)≤1+δj,
步骤3:根据步骤2给出的量化器分解形式对步骤1的多智能体模型设计自适应神经网络一致性控制协议,包括以下步骤;
31)首先给出基于图论的误差动态面方程:



zj,i=xj,i-αj,i-1(4)
其中,aj,i和bj分别是由拓扑结构决定的邻接矩阵和度矩阵的元素,αj,i-1是待设计虚拟控制信号;
32)利用backstepping设计方法并结合神经网络逼近特性进行第1步虚拟控制器设计,首先对误差信号zj,1求导,然后对递推过程产生的一系列未知不确定项进行神经网络逼近,并进行一系列不等式化简,最后根据Lya...

【专利技术属性】
技术研发人员:秦贞华何熊熊李刚伍益明
申请(专利权)人:浙江机电职业技术学院
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1