基于相移轮廓术在日光灯下进行高速三维形状测量的方法技术

技术编号:23533337 阅读:41 留言:0更新日期:2020-03-20 07:46
本发明专利技术公开了一种基于相移轮廓术在日光灯下进行高速三维形状测量的方法,对相机与投影仪进行标定,获得相机和投影仪的内参与外参;采用双四步相位轮廓测量技术,消除由日光灯所引起的相位误差,获得物体的理想相位信息;根据消除日光灯影响后的理想相位信息,获取物体在投影仪下的像素坐标,并结合相机和投影仪的内参与外参,将二维信息还原至真实的三维信息。本发明专利技术采用双四步相位轮廓测量技术,消除了由日光灯所引起的相位误差,提高了三维测量的精度。

A method of high speed 3D shape measurement under fluorescent lamp based on phase-shifting profilometry

【技术实现步骤摘要】
基于相移轮廓术在日光灯下进行高速三维形状测量的方法
本专利技术属于计算机视觉领域,具体涉及一种基于相移轮廓术在日光灯下进行高速三维形状测量的方法。
技术介绍
目前,相移轮廓测量法(PSP)通过灵活的设计条纹图案,结合像素与相位的一一对应关系,精确测量物体的三维形状。与传统的基于变化的单模式轮廓术相比,PSP更易于实现和保护边缘,因而PSP已经在逆向工程、先进制造、安全防护等领域取得了广泛的应用。为了获得正确的三维信息,必须确保主相位展开的准确性,在高速的三维测量中,理想状态下,PSP投射出的相移条纹的背景分量是不变的,但当PSP工作环境置于日光灯下时,日光灯的闪烁会导致相机所捕获的条纹出现变化的背景,进而导致不可忽略的相位误差。
技术实现思路
本专利技术的目的在于提供一种基于相移轮廓术在日光灯下进行高速三维形状测量的方法。实现本专利技术目的的技术解决方案为:一种基于相移轮廓术在日光灯下进行高速三维形状测量的方法,包括以下步骤:步骤一,对相机与投影仪进行标定,获得相机和投影仪的内参与外参;步骤二,采用双四步相位轮廓测量技术,消除由日光灯所引起的相位误差,获得物体的理想相位信息;步骤三,根据消除日光灯影响后的理想相位信息,获取物体在投影仪下的像素坐标,并结合相机和投影仪的内参与外参,将二维信息还原至真实的三维信息。本专利技术与现有技术相比,其显著优点在于:采用双四步相位轮廓测量技术,消除了由日光灯所引起的相位误差,提高了三维测量的精度。下面结合附图对本专利技术做进一步描述。附图说明图1是本专利技术方法所采用的实验装置图。图2是本专利技术日光灯模型的相位频谱分析图。图3是本专利技术平板模型相位误差消除前后的对比图。图4是本专利技术平板模型误差消除前重建与误差消除后重建对比图。图5是本专利技术标准球模型在灯亮与灯暗环境下对应的原始图像。图6是本专利技术标准球模型误差消除前重建与误差消除后重建对比图。具体实施方式如图1所示,基于相移轮廓术在日光灯下进行高速三维形状测量的方法,包括以下步骤:步骤一:对相机与投影仪进行标定,获得相机和投影仪的内参与外参;将投影仪(DLP)当作一个逆向的相机,通过建立投影仪DMD图像和相机CCD图像的对应关系,将投影仪转换成一个成熟的相机标定,从而将单相机结构光三维测量系统转换成经典的双目视觉系统。投影仪DMD图像获取的具体过程是先由计算机生成一组水平和垂直标准的十二步相移条纹加载到DLP中,采用圆形棋盘格作为标定靶,相机捕获由DLP投射在棋盘格上的相移条纹,提取棋盘格上每个圆所对应的亚像素级圆心坐标,利用四部相移法求解相对相位值,在通过格雷码解包裹获取绝对相位值,然后计算出对应的DMD图像坐标。最后采用经典的张正友标定法,即获得相机和投影仪的内参与外参。步骤二:采集日光灯下的物体图像,采用双四步相位轮廓测量技术,消除由日光灯所引起的相位误差,获得物体的理想相位信息;相机采集到的图像亮度主要受相机通光量和曝光时间共同决定,假设相机开始采集时刻为t1,采集的时间为tp,相机的采集帧率、传输时间、曝光时间分别为v、tr和te,其中tp=1/v=te+tr。则相机连续捕获的日光灯图像亮度可以表示为:式中,n表示图像序列,N表示采集图像的数量,(x,y)是图像对应的空间坐标,f表示日光灯频闪的频率,d0表示日光灯的背景,d1表示振幅。假设平板的表面反射率为α(x,y),则当日光灯照射到物体表面被相机捕获后,其图像强度为即其中,分别表示受物体表面调制后所对应的背景和振幅,以及第n次捕获图像的相位,γn=γ+Δn,其中称为初始相位值,随采集帧率变化v的相移量Δn具体可表示为:Δn=2π(n-1)f/ν(3)由于相移量伴随着帧数变化而变化,这促使背景强度为变量。为了更加准确的描述公式(2),日光灯中所观察到的相位振幅应存在二阶谐波分量,其主要来源于交流电弧炉,相应的公式可描述为:式中,表示所捕获图像中二阶谐波的幅值。在日光灯打开时,光投射到物体(平板)上,相机以500帧/s的采集速度直接对平板做图像采集,图2中(a)-(e)为不同时刻相机成功捕获的原始图像;计算出每幅图像的平均强度如图2中(f)所示,500幅图像平均强度的FFT谱如图(g)与(h)所示,可以看出频谱图像的分布显示出零频、基频以及二次谐波分量,结果与式4日光灯分布相对应。捕获的标准的N步相移模式可表示为式中,N代表着相移条纹的数目,an代表着图像光强的背景分量,b表示图像的灰度调制,为待计算的理想相位,δn为相移量且δn=2π(n-1)/N;对公式(5),利用最小二乘法求解出理想相位为:由于相机最终捕获的物体图像是投影仪投射在物体上的条纹图加上日光灯照射在物体上同时被物体调制后的结果,因而,相机所捕获的条纹图像可表示为:式中,aC(x,y)=α(x,y)[a(x,y)te+d0te],bC(x,y)=α(x,y)b(x,y)te,分别表示恒定的背景和条纹调制,表示第n次捕获的变化背景,且采用双四步相位轮廓测量技术,向物体连续投射两组相同的相移条纹,得到两组具有相同帧序列模式的条纹,对应相减可以得到四个易于求解的线性方程,求解方程组可以得到变化的背景分量,消除后便可直接计算出精确相位,具体方法为:当向物体连续投射两组相同的相移条纹时,所捕获的二组条纹强度分布为:从减去可以得到:相应的矩阵形式为:MX=C(11)其中,待求解系数常数项系数矩阵M可表示为:在求解出M之后,如果M可逆,那么可得X=M-1C,日光灯的强度可表示为其中Dn=[cosΔn,-sinΔn,cos2Δn,-sin2Δn],在减去消除日光灯后得到理想相位可表示为依据式16得到的理想相位,可以获取当前相位值所对应的DMD像素坐标。步骤三:根据消除日光灯影响后的理想相位信息,获取物体在投影仪下所对应的像素坐标,并结合相机和投影仪的内参与外参,将二维信息还原至真实的三维信息。实施例为了验证本专利技术方案的有效性,进行如下仿真实验。采用双四步相移算法对日光灯相位误差模型做消除,在灯亮、灯暗环境(灯暗可认为是理想环境)下,分别通过设置不同的相机采集帧率对平板做图像采集,图3展示了相机采集速度为500fps误差消除前后的相位分布,结果显示其消除后相位误差可基本与系统误差0.02rad保持一致,相应的其重建结果在图4。选择标准球模型,图5(a)-(d)分别展示了在灯暗环境下捕获的相移条纹图像、第一组在日光灯下捕获的相移条纹图像、第二组在日光灯下捕获的相移条纹图像以及用于解包裹的格雷码条纹图像,标准球模型重建的结果分别对应着图6(a)-(c),代表着误差模型消除前、本文档来自技高网...

【技术保护点】
1.基于相移轮廓术在日光灯下进行高速三维形状测量的方法,其特征在于,包括以下步骤:/n步骤一,对相机与投影仪进行标定,获得相机和投影仪的内参与外参;/n步骤二,采用双四步相位轮廓测量技术,消除由日光灯所引起的相位误差,获得物体的理想相位信息;/n步骤三,根据消除日光灯影响后的理想相位信息,获取物体在投影仪下的像素坐标,并结合相机和投影仪的内参与外参,将二维信息还原至真实的三维信息。/n

【技术特征摘要】
1.基于相移轮廓术在日光灯下进行高速三维形状测量的方法,其特征在于,包括以下步骤:
步骤一,对相机与投影仪进行标定,获得相机和投影仪的内参与外参;
步骤二,采用双四步相位轮廓测量技术,消除由日光灯所引起的相位误差,获得物体的理想相位信息;
步骤三,根据消除日光灯影响后的理想相位信息,获取物体在投影仪下的像素坐标,并结合相机和投影仪的内参与外参,将二维信息还原至真实的三维信息。


2.根据权利要求1所述的基于相移轮廓术在日光灯下进行高速三维形状测量的方法,其特征在于,步骤一中,首先由计算机生成一组水平和垂直标准的十二步相移条纹加载到投影仪中,采用圆形棋盘格作为标定靶,由相机捕获投影仪投射在棋盘格上的相移条纹,提取棋盘格上每个圆所对应的亚像素级圆心坐标,利用四部相移法求解相对相位值,在通过格雷码解包裹获取绝对相位值,然后计算出对应的DMD图像坐标;最后采用经典的张正友标定法,即获得相机和投影仪...

【专利技术属性】
技术研发人员:郑东亮韩静张毅王景王兴国于浩天赵洋林楚
申请(专利权)人:南京理工大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1