一种储层优势通道物性参数计算方法技术

技术编号:23395673 阅读:33 留言:0更新日期:2020-02-22 08:50
本发明专利技术公开了一种储层优势通道物性参数计算方法,包括:步骤1,大孔道位置分布的确定;步骤2,孔径分布的计算;步骤3,流水区域横向非均质性的计算;步骤4,各级孔道体积的计算;步骤5,裂缝性储层的模拟计算。本发明专利技术的优点是:准确计算出水驱区域内各级孔道的大小和体积,以往的技术仅限于识别出井间存在的优势通道,并没有涉及到各级通道体积的计算。

A calculation method of physical property parameters of reservoir dominant channel

【技术实现步骤摘要】
一种储层优势通道物性参数计算方法
本专利技术涉及油气田开发
,特别涉及一种储层优势通道物性参数计算方法。
技术介绍
油田长期注水开发过程中,由于储层受到注人水长期浸泡和冲刷,流体的性质、动力学特征和储层物性将发生明显改变,造成了油水井间存在优势渗流通道,导致注水无效循环,影响油田采收率。目前对优势通道的研究主要基于优势通道的定性识别,如采用矿场资料直接法、生产动态资料识别法、示踪剂监测法、缺少一种计算优势通道体积和物性参数的有效方法。本专利技术以油气层渗流力学理论为基础,提出了一种依靠现场的常规动、静态资料计算优势通道物性参数的方法,为油田开发中后期深部调剖或井网调整措施提供了理论依据。
技术实现思路
本专利技术针对现有技术的缺陷,提供了一种储层优势通道物性参数计算方法,能有效的解决上述现有技术存在的问题。为了实现以上专利技术目的,本专利技术采取的技术方案如下:一种储层优势通道物性参数计算方法,包括以下步骤:步骤1,大孔道位置分布的确定;对于均质、等厚、单产层一对注采井控制区内,从投产经过时间t,原油工业采收率达到B%,而生产井含水率达到A%。记注水井点O,生产井为点W,线段OW附近压力梯度最大,以OE、OF为长度单位,由确定参数α,曲线y=xα(x∈[0,1])则是高渗透带的下边界,上边界与下边界关于对角线OW对称。如此,计算、模拟出大孔道的分布位置,对于非均质地层,利用油藏描述结果和吸水剖面等资料,确定大孔道的分布区域,其面积等于B%,反映在注采井控制区内,B%面积内的原油已被采出,此面积内包含着优势渗流通道,原油基本上被驱替,孔道内渗流的流体是水,而(1-B%)的面积内原油未被采出。不同的α值对应不同的下边界曲线,也就对应不同的高渗条带分布区域,对于非五点井网,用左右邻井连线的中点确定控制区域,面积记为S1,其内的采出程度仍记为B%,下边界曲线对应的α1满足方程:步骤2,孔径分布的计算;设储层按纵向非均质分为n层,设注水开采后期某时刻,根据吸水剖面、吸水指数、采液指数,通过劈分可确定各层的实际采收率Bi%,i=1,2,…,n。若横向非均质,在第i层粗略画出流水区域仍记为Bi,使其包含渗透率高的位置,其体积等于该层总体积的Bi%;若无横向非均质性,则画出Bi,其面积等于该层总面积的Bi%,第i层的水油流量比Ai是第i层产液的含水率,而且这里Kio、μo、μw、Bi%都为已知,可求出此时第i层的水相渗透率该层水淹孔隙的平均半径其中φiw是注入水波及区域的孔隙度。若K以达西,r以厘米为单位,有近似式其余未水淹部位的平均孔径则是记即λi表第i层水流过区域和油流过区域处孔隙半径之比,孔隙半径服从对数正态分布,近似服从正态分布即其中第i原状地层孔喉半径标准差σio通过(11)式计算。根据需要可将孔道半径分为若干级,孔道分级及其划分标准,根据地质情况和工程需要确定。在无特殊考虑时,孔径分级的原则是,对多数一注一采控制区计算出的孔径属于各级的概率比较适当,不至于出现某一、两级的概率特别高或特别低的情形。将一井组控制区用三维网格细分,落在Bi中的点对应孔喉半径其中:σiw=λiσio(13)计算riw属于上述等级的概率,按概率值将[0,1]区间分为k个子区间,长度对应概率值。产生[0,1]区间均匀分布的随机数X,若X落在第k子区间,则此点处孔喉半径为第k级,此点打上第k种标记。步骤3,流水区域横向非均质性的计算;把一注一采单元区间[0,Re]100等分;每一份区域内视为不可压缩流体单向流,而宏观上每一份的流动又各不相同,这100份共同组成了一注一采井间流动。按达西定律第j份的流量公式为式中Aj——第J份过水断面面积,m2;Kj——渗透率,md;ΔPj——第j份两端的压差,mPa;Qj——第j份的流量,m3/月;L——每小份的长度,井距Re/100,m;μ——粘度,mPa·s;a——单位修正系数,a=0.3858。由此可得第j份处的渗透率公式(15)表明对于已知的压差、渗流截面积和流量可求取渗透率,下面叙述各处压差、渗流截面积和流量的计算方法,以求取各处的渗透率。1.流量的计算用注入井第j层的月吸水量Q1和生产井对应该层的月产液量Q2的线性组合可求出第i份中的液流量Qi2.各处压力的计算A井注水,同时B井产液,则通过推导可确定地层任意一点M的压力为其中其中r1——M点到注水井A的距离;r2——M点到生产井B的距离;re——供给半径;rw——井筒半径;R——井距。pWA、pWB为A井注水,同时B井产液,两井的井底压力。3.截面面积A的求法设半径为r的圆与曲线y=xα相交于点(x,y),解方程组即可得到交点坐标(x,y)。于是可以求得β=tan-1(y/x),从而θ=π/2-2β,设储层厚度为h,那么半径为r处的过水断面面积为将截面面积A、Δp、流量Qi等值代入(15)式,求出半径为r的截面处渗透率K,再用上段所述方法计算此处孔喉半径属于各个级次的概率。步骤4,各级孔道体积的计算;在定量分析大孔道位置和尺寸分布后,还要对各级孔道的体积进行计算,各级孔道体积计算过程如下:Re表示注水井O和采油井W的距离,设半径为r的圆与曲线y=a1-αxα相交于(x,y),解方程组得到(xr,yr),tgβ=(xr/a)α-1,β=tan-1((xr/a)α-1),θ=π/2-2β,扇形AOB的面积为SAOB=πθr2/2,直线y=xtgβ与曲线y=a1-αxα所围图形的面积大孔道分布区域在半径为r圆内的面积为设超大孔道、大孔道、中孔道、小孔道在半径r处的分布概率分别为p1(r),p2(r),p3(r),p4(r),将区间[0,Re]100等分,间隔为Re/n,可得第r份的i级孔道体积其中,xr通过解方程组得到。步骤5,裂缝性储层的模拟计算把流水区域100份中每一份的渗透率K,孔隙度φ都计算出来,在此基础上,通过公式其中bi——裂缝宽度,mm;——第i份的裂缝渗透率,D;——第i份的裂缝孔隙度。算出第i份的裂缝宽度bi,其中第i份的裂缝渗透率近似用原软件算出的Ki代替,这是因为裂缝渗透率远大于基质渗透率,即认为水都是沿裂缝窜流过去;而是实测数据,在没有实测数据的情况下,用下面的方法确定首先要对三个井组的孔隙度和渗透率本文档来自技高网...

【技术保护点】
1.一种储层优势通道物性参数计算方法,其特征在于,包括以下步骤:/n步骤1,大孔道位置分布的确定;/n对于均质、等厚、单产层一对注采井控制区内,从投产经过时间t,原油工业采收率达到B%,而生产井含水率达到A%;记注水井点O,生产井为点W,线段OW附近压力梯度最大,以OE、OF为长度单位,由/n

【技术特征摘要】
1.一种储层优势通道物性参数计算方法,其特征在于,包括以下步骤:
步骤1,大孔道位置分布的确定;
对于均质、等厚、单产层一对注采井控制区内,从投产经过时间t,原油工业采收率达到B%,而生产井含水率达到A%;记注水井点O,生产井为点W,线段OW附近压力梯度最大,以OE、OF为长度单位,由



确定参数α,曲线
y=xα(x∈[0,1])
则是高渗透带的下边界,上边界与下边界关于对角线OW对称;如此,计算、模拟出大孔道的分布位置,对于非均质地层,利用油藏描述结果和吸水剖面等资料,确定大孔道的分布区域,其面积等于B%,反映在注采井控制区内,B%面积内的原油已被采出,此面积内包含着优势渗流通道,原油基本上被驱替,孔道内渗流的流体是水,而(1-B%)的面积内原油未被采出;
不同的α值对应不同的下边界曲线,也就对应不同的高渗条带分布区域,对于非五点井网,用左右邻井连线的中点确定控制区域,面积记为S1,其内的采出程度仍记为B%,下边界曲线对应的α1满足方程:



步骤2,孔径分布的计算;
设储层按纵向非均质分为n层,设注水开采后期某时刻,根据吸水剖面、吸水指数、采液指数,通过劈分可确定各层的实际采收率Bi%,i=1,2,…,n;
若横向非均质,在第i层粗略画出流水区域仍记为Bi,使其包含渗透率高的位置,其体积等于该层总体积的Bi%;若无横向非均质性,则画出Bi,其面积等于该层总面积的Bi%,第i层的水油流量比



Ai是第i层产液的含水率,而且



这里Kio、μo、μw、Bi%都为已知,可求出此时第i层的水相渗透率



该层水淹孔隙的平均半径



其中φiw是注入水波及区域的孔隙度;若K以达西,r以厘米为单位,有近似式



其余未水淹部位的平均孔径则是







即λi表第i层水流过区域和油流过区域处孔隙半径之比,孔隙半径服从对数正态分布,近似服从正态分布






其中第i原状地层孔喉半径标准差σio通过(11)式计算;



根据需要可将孔道半径分为若干级,
孔道分级及其划分标准,根据地质情况和工程需要确定;
在无特殊考虑时,孔径分级的原则是,对多数一注一采控制区计算出的孔径属于各级的概率比较适当,不至于出现某一、两级的概率特别高或特别低的情形;
将一井组控制区用三维网格细分,落在Bi中的点对应孔喉半径



其中:σiw=λiσio(13)
计算riw属于上述等级的概率,按概率值将[0,1]区间分为k个子区间,长度对应概率值;
产生[0,1]区间均匀分布的随机数X,若X落在第k子区间,则此点处孔喉半径为第k级,此点打上第k种标记;
步骤3,流水区域横向非均质性的计算;
把一注一采单元区间[0,Re]100等分;
每一份区域内视为不可压缩流体单向流,而宏观上每一份的流动又各不相同,这100份共同组成了一注一采井间流动;按达西定律第j份的流量公式为



式中Aj——第J份过水断面面积,m2;
Kj——渗透率,md;
ΔPj——第j份两端的压差,MPa;
Qj——第j份的流量,m3/d;
L——每小份的长度,井距Re/100,m;
μ——粘度,mPa·s;
a——单位修正系数,a=0.3858;
由此可得第j份处的渗透率



公式(15)表明对于已知的压差、渗流截面积和流量可求取渗透率,下面叙述各处压差、渗流截面积和流量的计算方法,以求取各处的渗透率;
1.流量的计算
用注入井第j层的月吸水量Q1和生产井对应该层的月产液量Q2的线性组合可求出第i份中的液流量Qi
<...

【专利技术属性】
技术研发人员:冯国庆何玉俊唐凡薛芳芳
申请(专利权)人:西南石油大学
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1