一种间歇性能源出力不确定性的数学建模方法技术

技术编号:23344143 阅读:128 留言:0更新日期:2020-02-15 04:08
本申请涉及一种间歇性能源出力不确定性的数学建模方法。现有的建模方式通常采用历史数据拟合间歇性能源出力的概率分布,不能准确描述自然灾害后的实际出力分布,并且未能考虑天气状况带来的影响。本申请提供了一种间歇性能源出力不确定性的数学建模方法,包括:步骤1:最大期望算法初始化:采用硬聚类算法求解模型参量初值;步骤2:计算期望:针对每一个数据的隐变量进行概率计算;步骤3:最大化:推导带有权重数据的高斯混合模型参数迭代公式;步骤4:重复所述步骤2~3直至收敛。考虑不同天气类型带来的权重问题,有效拟合带有不同权重的间歇性能源出力概率分布,并实时更新模型参数,更为准确地描述间歇性能源在极端故障时段的不确定性。

A mathematical modeling method for the uncertainty of intermittent energy output

【技术实现步骤摘要】
一种间歇性能源出力不确定性的数学建模方法
本申请属于电力系统分析
,特别是涉及一种间歇性能源出力不确定性的数学建模方法。
技术介绍
间歇性能源是指太阳能,风能等不连续产生的能源。此类能源由于具有间歇性的缺点,储存成为关键。如风能,再利用风能发电时,必须和一定的蓄能方式结合才能实现连续供电,而最简单的储蓄办法是用蓄电池。风电、光伏等间歇性能源在电网中的渗透逐渐提高,其所带来的随机性、波动性等不确定性特点对电力系统的运行和规划带来了巨大的挑战,如何较为准确对风光出力不确定性建模已成为研究中的热点问题。基于统计理论的概率密度函数在间歇性能源波动特性的研究中得到了广泛应用,通过特定分布函数拟合间歇性能源出力特性,进而实现对风电、光伏出力波动变化规律研究。通过对风光出力值、出力预测误差值采用威布尔分布、正态分布、贝塔分布等单一分布函数的建模方法,单一分布函数存在较大误差。而采用高斯混合模型能准确描述间歇性能源出力分布,高斯混合模型的高斯分布个数越多,拟合程度越好。此外,考虑不同时空尺度下风力发电与光伏发电的概率相关性,通常采用Copula函本文档来自技高网...

【技术保护点】
1.一种间歇性能源出力不确定性的数学建模方法,其特征在于:所述方法包括如下步骤:/n步骤1:最大期望算法初始化:采用硬聚类算法求解模型参量初值;/n步骤2:计算期望:针对每一个数据的隐变量进行概率计算;/n步骤3:最大化:推导带有权重数据的高斯混合模型参数迭代公式;/n步骤4:重复所步骤2~3直至收敛。/n

【技术特征摘要】
1.一种间歇性能源出力不确定性的数学建模方法,其特征在于:所述方法包括如下步骤:
步骤1:最大期望算法初始化:采用硬聚类算法求解模型参量初值;
步骤2:计算期望:针对每一个数据的隐变量进行概率计算;
步骤3:最大化:推导带有权重数据的高斯混合模型参数迭代公式;
步骤4:重复所步骤2~3直至收敛。


2.如权利要求1所述的间歇性能源出力不确定性的数学建模方法,其特征在于:所述步骤2中针对每一个数据xi的隐变量进行概率计算,计算公式如下:






其中,x为多维随机向量,ωi为观测数据xi的权重参量,πk为第k个高斯分量的权重,μk为第k个高斯分量的期望向量,∑k为第k个高斯分量的协方差矩阵,L为高斯模型维数,GMM参数集为θ={πk,μk,∑k;k=1,...K}。


3.如权利要求1所述的间歇性能源出力不确定性的数学建模方法,其特征在于:所述步骤3中推导带有权重数据的高斯混合模型参数迭代公式:









其中,x为多维随机向量,ωi为观测数据xi的权重参量,πk为第k个高斯分量的权重,μk为第k个高斯分量的期望向量,∑k为第k个高斯分量的协方差矩阵,L为高斯模型维数,GMM参数集为θ={πk,μk,∑k;k=1,...K}。


4.如权利要求1~3中任一项所述的间歇性能源出力不确定性的数学建模方法,其特征在于:还包括间歇性能源出力概率分布参数自学习。


5.如权利要求4所述的间歇性能源出力不确定性的数学建模方法,其特征在于:所述间歇性能源出力概率分布参数自学习包括如下步骤:
a、最大期望算法初始化:初值设定为所述权利要求1~3中求出的先验分布的参数;
b、计算期望:采用先验分布参数计算概率;
c、最大化:依据实时数据计算高斯混合模型参量;
d、更新高斯混合模型参数,得到间歇式能源后验概率分布。


6.如权利...

【专利技术属性】
技术研发人员:谢桦许寅王奕凡
申请(专利权)人:北京交通大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1