一种强度调制直接检测链路中的偶次谐波抑制系统技术方案

技术编号:22554212 阅读:23 留言:0更新日期:2019-11-13 19:11
本实用新型专利技术公开一种强度调制直接检测链路中的偶次谐波抑制系统,由激光源、第一光电二极管、第二光电二极管、外调制器、第一光耦合器、第二光耦合器、光电探测器和偏压控制电路板组成。偏压控制电路板将第一光电二极管送入的外调制器的输入监测信号和第二光电二极管送入的光电探测器的输入监测信号进行差值积分运算处理,并将结果用于控制外调制器的偏置电压,从而调节外调制器的偏置点,使偏置点在正交点附近变化,使得外调制器的偶次谐波和光电探测器的偶次谐波的输出幅度匹配,相位相差180°,从而实现外调制器的偶次谐波失真和光电探测器的偶次谐波失真相互抵消。

An even harmonic suppression system in intensity modulation direct detection link

The utility model discloses an even harmonic suppression system in an intensity modulation direct detection link, which is composed of a laser source, a first photodiode, a second photodiode, an external modulator, a first photocoupler, a second photocoupler, a photodetector and a bias control circuit board. The bias control circuit board processes the input monitoring signal of the external modulator sent by the first photodiode and the input monitoring signal of the photodetector sent by the second photodiode with the difference integral operation, and uses the result to control the bias voltage of the external modulator, so as to adjust the bias point of the external modulator, so that the bias point changes near the positive intersection point, so as to make the even degree of the external modulator The output amplitude of the harmonic and the even harmonic of the photodetector are matched, and the phase difference is 180 \u00b0, so that the even harmonic distortion of the external modulator and the even harmonic distortion of the photodetector can be mutually cancelled.

【技术实现步骤摘要】
一种强度调制直接检测链路中的偶次谐波抑制系统
本技术涉及微波光子
,具体涉及一种强度调制直接检测链路中的偶次谐波抑制系统。
技术介绍
微波光子链路具有光域固有的宽带特性,其在多倍频应用中具有广阔的前景。但在微波光子链路中,光电探测器的存在会限制这种多倍频应用,即光电探测器产生的偶次谐波,会使光域的宽带特性受到破坏,限制了多倍频程的应用。目前,已有的解决方法是通过架构设计来弥补这一缺陷,即搭建光电探测器阵列来获得更好的线性度。虽然对于偶次和奇次谐波,光电探测器阵列增益会随着阵列数成比例增加,而阵列增益的增加可以提高三阶交调截点。但是因为光电探测器阵列采用的是将多个非线性设备间的输入信号分开,并在输出端进行线性化的组合的方式,因而光电探测阵列会大大增加系统的复杂程度。
技术实现思路
本技术所要解决的是光电探测器的存在会限制这种多倍频应用的问题,提供一种强度调制直接检测链路中的偶次谐波抑制系统。为解决上述问题,本技术是通过以下技术方案实现的:一种强度调制直接检测链路中的偶次谐波抑制系统,由激光源、第一光电二极管、第二光电二极管、外调制器、第一光耦合器、第二光耦合器、光电探测器和偏压控制电路板组成;其中第一光耦合器和第二光耦合器的主输出端和次输出端的分光比相同;激光源的输出端与第一光耦合器的输入端连接;第一光耦合器的主输出端连接外调制器的输入端,第一光耦合器的次输出端经由第一光电二极管连接偏压控制电路板的一输入端;外调制器的输出端连接第二光耦合器的输入端;第二光耦合器的主输出端连接光电探测器,第二光耦合器的次输出端经由第二光电二极管连接偏压控制电路板的另一输入端;射频信号连接外调制器的射频信号加载端;偏压控制电路板的输出端连接外调制器的偏置电压加载端;偏压控制电路板对第一光电二极管送入的外调制器输入监测信号和第二光电二极管送入的光电探测器输入监测信号进行差值积分运算处理,并将结果用于控制外调制器的偏置电压,以自适应调节外调制器的偏置电压,使其相位在正交点附近变化,并使得外调制器的偶次谐波和光电探测器的偶次谐波的输出相位相差180°,外调制器偶次失真与光电探测器偶次失真相互抵消。上方案中,当外调制器的偏置电压的相位满足式①时,外调制器偶次失真与光电探测器偶次失真相互抵消;其中,φdc(t)表示外调制器的偏置电压的相位,a为光电探测器中光电二极管的二阶交调截点的功率值,为光电探测器的响应度,为第一光电二极管的响应度,为第二光电二极管的响应度,I1(t)为外调制器输入监测信号的电流值,I2(t)为光电探测器输入监测信号的电流值,K为第一光耦合器和第二光耦合器的次输出端占总输出的比例系数。上方案中,第一光耦合器和第二光耦合器的主输出端和次输出端的分光比均为95:5或99:1。上方案中,外调制器为马赫-曾德尔调制器。作为改进,上述系统还进一步包括上位机,该上位机与偏压控制电路板的控制端连接。与现有技术相比,本技术在不降低基波功率的情况下,将外调制器的偏置调整到微小偏移正交点处,使其偶次谐波幅度匹配光电探测器偶次谐波的幅度,在某一条件下这两项输出相位差180°,实现外调制器的偶次谐波失真和光电探测器的偶次谐波失真相互抵消。附图说明图1为一种强度调制直接检测链路中的偶次谐波抑制系统的示意图。图2为基频率为2GHz时,基波功率和二次谐波功率的试验测试结果。图中标号:1、激光源,2-1、第一光电二极管,2-2、第二光电二极管,3、外调制器,4-1、第一光耦合器,4-2、第二光耦合器,5、光电探测器,6、偏压控制电路板,7、上位机。具体实施方式为使本技术的目的、技术方案和优点更加清楚明白,以下结合具体实例,对本技术进一步详细说明。参见图1,一种强度调制直接检测链路中的偶次谐波抑制系统,主要由激光源1、第一光电二极管2-1、第二光电二极管2-2、外调制器3、第一光耦合器4-1、第二光耦合器4-2、光电探测器5、偏压控制电路板6和上位机7组成。在本技术中,外调制器3为马赫-曾德尔调制器(Mach-Zehndermodulator,MZM)。第一光耦合器4-1和的第二光耦合器4-2的主输出端和次输出端的分光比相同,即同时为95:5或同时为99:1。在本实施例中,第一光耦合器4-1和的第二光耦合器4-2的主输出端和次输出端的分光比均为95:5。激光源1的输出端与第一光耦合器4-1的输入端连接,第一光耦合器4-1的主输出端连接外调制器3的输入端,外调制器3的输出端连接第二光耦合器4-2的输入端,第二光耦合器4-2的主输出端连接光电探测器5。第一光耦合器4-1的次输出端经由第一光电二极管2-1连接偏压控制电路板6的一输入端。第二光耦合器4-2的次输出端经由第二光电二极管2-2连接偏压控制电路板6的另一输入端。偏压控制电路板6的输出端和射频信号分别连接外调制器3的偏置电压加载端和射频信号加载端。此外,偏压控制电路板6的控制端还可以与上位机7进行连接。从激光源1产生稳定的光载波,光载波经过光耦合器,实现95:5的功率分配。其中95%的光载波信号(A路信号)输入到外调制器3,在外调制器3中实现射频信号加载以及偏置电压控制后,外调制器3输出的信号经过光耦合器实现95:5的功率分配,其中95%的信号(C路信号)输入到光电探测器5。第一光耦合器4-1和的第二光耦合器4-2分别设置在外调制器3的输入端和输出端,且将其设置为一个极不平衡的状态实现大比例的功率分配,其目的在于留小部分光信号做监测用。第一光耦合器4-1和的第二光耦合器4-2分出来的两路5%的小部分光信号(B路信号和D路信号)分别经由第一光电二极管2-1和第二光电二极管2-2共同输入到偏压控制电路,从而构成一个积分反馈环路。位于第一光耦合器4-1与偏压控制电路之间的第一光电二极管2-1和位于第二光耦合器4-2与偏压控制电路之间的第二光电二极管2-2,分别用于实时监测外调制器3的输入和光电探测器5的输入所分出来小部分光信号,以便后续偏压控制电路针对光信号的变化对外调制器3偏置电压进行调节。偏压控制电路将两路用于监测的光信号进行比较,将信号差值积分运算后输出到外调制器3的偏置电压加载端,进而控制外调制器3的偏置电压,使其偏置点位于合适的位置,这样就保证了外调制器3的偏置点在正交点附近自适应,从而满足抵消条件,使得外调制器3的偶次谐波与光电探测器5的偶次谐波相互抵消。下面以二次谐波失真为例,来说明的是本技术对偶次谐波都有抑制作用:激光源1发射稳定的光载波信号进入外调制器3,在外调制器3中实现射频信号(RF)加载和偏置电压(DC)加载,调制后的信号送至光电探测器5。由于外调制器3偏置点处于正交点时,具有线性特性,而外调制器3的偏置点偏离正交点时,会引发一定的谐波失真。因此,为了量化外调制器3的谐波失真对应的光电流大小,本技术假设输入外调制器3的信号加载直流偏置电压为Vdc,加载RF信号为等幅的双音信号V1sin(Ω1t)+V2sin(Ω2t),理想光电探测器5的响应为根据IMDD链路的传输函数,推导得出偶次谐波中最大的失真项,即二阶交调失真(IMD2)。不同于外调制器3偏置点变化引起的谐波失真,光电探测器5产生的谐波失真主要是由于光电二极管的固有的本文档来自技高网...

【技术保护点】
1.一种强度调制直接检测链路中的偶次谐波抑制系统,其特征是,由激光源(1)、第一光电二极管(2‑1)、第二光电二极管(2‑2)、外调制器(3)、第一光耦合器(4‑1)、第二光耦合器(4‑2)、光电探测器(5)和偏压控制电路板(6)组成;其中第一光耦合器(4‑1)和第二光耦合器(4‑2)的主输出端和次输出端的分光比相同;激光源(1)的输出端与第一光耦合器(4‑1)的输入端连接;第一光耦合器(4‑1)的主输出端连接外调制器(3)的输入端,第一光耦合器(4‑1)的次输出端经由第一光电二极管(2‑1)连接偏压控制电路板(6)的一输入端;外调制器(3)的输出端连接第二光耦合器(4‑2)的输入端;第二光耦合器(4‑2)的主输出端连接光电探测器(5),第二光耦合器(4‑2)的次输出端经由第二光电二极管(2‑2)连接偏压控制电路板(6)的另一输入端;射频信号连接外调制器(3)的射频信号加载端;偏压控制电路板(6)的输出端连接外调制器(3)的偏置电压加载端;偏压控制电路板(6)对第一光电二极管(2‑1)送入的外调制器(3)输入监测信号和第二光电二极管(2‑2)送入的光电探测器(5)输入监测信号进行差值积分运算处理,并将结果用于控制外调制器(3)的偏置电压,以自适应调节外调制器(3)的偏置电压,使其相位在正交点附近变化,并使得外调制器(3)的偶次谐波和光电探测器(5)的偶次谐波的输出相位相差180°,外调制器(3)偶次失真与光电探测器(5)偶次失真相互抵消。...

【技术特征摘要】
1.一种强度调制直接检测链路中的偶次谐波抑制系统,其特征是,由激光源(1)、第一光电二极管(2-1)、第二光电二极管(2-2)、外调制器(3)、第一光耦合器(4-1)、第二光耦合器(4-2)、光电探测器(5)和偏压控制电路板(6)组成;其中第一光耦合器(4-1)和第二光耦合器(4-2)的主输出端和次输出端的分光比相同;激光源(1)的输出端与第一光耦合器(4-1)的输入端连接;第一光耦合器(4-1)的主输出端连接外调制器(3)的输入端,第一光耦合器(4-1)的次输出端经由第一光电二极管(2-1)连接偏压控制电路板(6)的一输入端;外调制器(3)的输出端连接第二光耦合器(4-2)的输入端;第二光耦合器(4-2)的主输出端连接光电探测器(5),第二光耦合器(4-2)的次输出端经由第二光电二极管(2-2)连接偏压控制电路板(6)的另一输入端;射频信号连接外调制器(3)的射频信号加载端;偏压控制电路板(6)的输出端连接外调制器(3)的偏置电压加载端;偏压控制电路板(6)对第一光电二极管(2-1)送入的外调制器(3)输入监测信号和第二光电二极管(2-2)送入的光电探测器(5)输入监测信号进行差值积分运算处理,并将结果用于控制外调制器(3)的偏置电压,以自适应调节外调制器(3)的偏置电压,使其...

【专利技术属性】
技术研发人员:尹怡辉杨万里宋文忠覃勇朱宏韬熊平戬
申请(专利权)人:中国电子科技集团公司第三十四研究所
类型:新型
国别省市:广西,45

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1