【技术实现步骤摘要】
一种风力发电系统大工况范围控制方法
本专利技术属于风力发电
,尤其涉及一种风力发电系统大工况范围控制方法。
技术介绍
随着风电在能源结构中的比例不断提高,对风力发电系统的性能提出了更高的要求,相关研究也在不断推进以实现更高效和稳定的风功率俘获与输出。如中国专利申请号为:CN105449699A的专利技术提出了一种针对双馈感应风电机组的非线性分数阶自抗扰阻尼控制方法,通过构建自抗扰控制器,实现改进双馈机组相对电网的阻尼水平,提高机组电网友好特性。如中国专利申请号为:CN104779642A的专利技术提出了一种风力发电系统的频率与阻尼综合控制方法,在风电机组控制中结合微分控制环和频率下垂控制部分,改进风电机组在最大功率跟踪部分的特性,使风电机组具有频率调节和抑制系统功率震荡的能力。这些技术的思想与实现方式与本专利均有可取之处,但在具体实施并不相同。
技术实现思路
本专利技术的目的是,针对现有技术的不足,提供一种风力发电系统大工况范围控制方法,综合考虑风力发电系统的非线性特性,针对额定风速以上至切出风速以前的大工况范围,利用几何线性化构造涵盖大运行工况范围的风电机组线 ...
【技术保护点】
1.一种风力发电系统大工况范围控制方法,其特征在于,包括如下步骤:步骤1:风力发电系统各部件的物理特性构建风力发电系统微分方程模型,得到其机理模型,利用机理方程,选择转子转速ωr、发电机转速ωg、传动轴前后位移偏差δ和桨距角β为状态变量,分别记为x1,x2,x3,x4、x=[ωr,ωg,δ,β]′,并建立风力发电系统的非线性模型,将非线性模型写成仿射的状态空间的形式,记其中非线性状态矩阵为f(x),线性的输入矩阵为G,非线性模型写为:
【技术特征摘要】
1.一种风力发电系统大工况范围控制方法,其特征在于,包括如下步骤:步骤1:风力发电系统各部件的物理特性构建风力发电系统微分方程模型,得到其机理模型,利用机理方程,选择转子转速ωr、发电机转速ωg、传动轴前后位移偏差δ和桨距角β为状态变量,分别记为x1,x2,x3,x4、x=[ωr,ωg,δ,β]′,并建立风力发电系统的非线性模型,将非线性模型写成仿射的状态空间的形式,记其中非线性状态矩阵为f(x),线性的输入矩阵为G,非线性模型写为:其中,u=[βd,ωz]′,为本发明控制参数中的桨距角设定值和发电机转速设定值;步骤2:设输出参数y=h(x)=[ωr,δ]′,判断LGLfh的值,LGLf表示h的李导数,验证判断LGLfh的非零行,当LGLfh不等于0时,进行几何线性化;步骤3:选择状态参数中的x1和x3,计算其一阶和二阶李导数;步骤4:构建微分同胚结构φ,映射得到几何线性化后的风电机组额定风速以上工况大范围线性模型,记为其中z为新的状态空间变量,A和B分别为微分同胚后的线性系统状态和输入矩阵,v为线性模型的输入参数且v=fz+Gzu;步骤5:对几何线性化后的风电机组大工况范围模型的极点分布,构建包括以最右边界线、最大扩张角、最大分布半径的目标极点区域,并利用区域极点配置的方法,计算得到反馈控制率v=Kz;步骤6:结合以上线性化和微分同胚,计算真实系统控制率利用得到的控制率对所建模机组进行测试,分析其动态性能,包括系统是否超调、超调量大小、调节时间长短和是否存在稳态误差;步骤7:利用鲁棒控制中区域极点配置的方法来构造目标极点区域,这一区域的边界由以下各部分构成:最右边界限,即虚轴左侧某一与虚轴平行的直线,限制目标极点调节区域的最右边界;最大扩张角,限制目标极点区域中,复极点与原点的最大夹角,来实现对动态特性的调节;最大分布半径,即目标极点区域的最后边界;在对这三个边界进行设置以后...
【专利技术属性】
技术研发人员:陈振宇,林忠伟,刘吉臻,韩翔宇,李宜霖,
申请(专利权)人:华北电力大学,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。