当前位置: 首页 > 专利查询>重庆大学专利>正文

基于梯度蜂巢体和三维肋管的除尘换热一体化装置制造方法及图纸

技术编号:22349011 阅读:35 留言:0更新日期:2019-10-19 17:59
本实用新型专利技术提供一种基于梯度蜂巢体和三维肋管的除尘换热一体化装置,属于工业节能环保技术领域。该装置从外到内依次由复合梯度孔金属蜂巢体、金属支撑体以及三维内外肋管。复合梯度孔金属蜂巢体由耐热金属丝通过编制加工而成,孔隙率呈横纵向梯度变化,通过层叠堆置而成的蜂巢式过滤蓄换热体;三维内外肋管是在换热腔室或换热管表面加工出三维离散肋结构的三维肋平板腔室或三维内外肋管。该装置突破性地实现了对600℃‑1200℃的高温高含尘烟气连续除尘与蓄换热一体化处理,具有高效净化、稳定蓄换热、连续工作、寿命长等优点,余热回收效率可达70%以上,除尘效率可达99%以上。

An integrated dust removal and heat exchange device based on gradient honeycomb and three-dimensional rib tube

【技术实现步骤摘要】
基于梯度蜂巢体和三维肋管的除尘换热一体化装置
本技术涉及工业节能环保
,特别是指一种基于梯度蜂巢体和三维肋管的除尘换热一体化装置。
技术介绍
在冶金、石化、建材、电力及其他行业中常产生高温(>1000℃)高含尘(>2g/Nm3)工业烟气。高温烟气中含有丰富的余热,但也存在高浓度的飞灰颗粒,这些颗粒是大气中PM2.5的主要来源之一。若将高温高含尘工业烟气直接排放到大气中,不仅会造成能源浪费,还会导致环境污染问题。因此,对高温高含尘烟气进行除尘和余热回收利用,对节能减排具有重要意义。目前,高温高含尘工业烟气余热回收利用效率不理想,换热设备在高温高含尘条件下存在换热效率低、体积大、易积灰等缺点,除尘设备无法在高温高含尘条件下高效除尘。这是因为受到除尘技术的限制、余热回收装置存在技术缺陷以及时变性的烟气工况造成无法实现连续高效的余热回收利用。在目前的除尘技术中,静电除尘器以及颗粒床除尘器投资及能耗高、占地面积大;陶瓷膜除尘器因压降高,产生的能耗大,抗热震性很低,易发生断裂,导致使用寿命较短。因此,工业上通常的做法是对高温高含尘烟气先进行降温处理,主要方式是通过喷淋降温或加入冷空气降温至200-300℃,再用袋式除尘器进行净化,这种方式不仅造成了能源浪费,还会使余热回收装置直接暴露在高含尘烟气环境中,导致换热管表面出现积灰和磨损现象,严重影响换热器的余热回收效率和使用寿命。除此之外,传统的余热回收装置换热面积小,换热不充分,导致排烟温度居高不下,浪费了大量的余热资源。在余热回收过程中,工业设备往往不能保持稳定的运行工况,这就导致烟气系统中的风量、温度等重要参数间歇式地改变,当烟气的风量和温度骤降时,余热回收装置的热负荷降低,从而严重影响了换热器的余热回收效率。因此,若能在高温烟气环境中直接进行除尘处理,同时采用高效的换热元件并耦合蓄热结构进行余热回收,开发设计出一种利用梯度蜂巢体实现烟气除尘换热一体化装置及方法,可以同时解决高温高含尘烟气余热回收效率不理想、除尘设备无法在高温高含尘条件下高效除尘的技术瓶颈问题,并获得显著的余热回收效果。
技术实现思路
本技术要解决的技术问题是提供一种基于梯度蜂巢体和三维肋管的除尘换热一体化装置。该装置包括复合梯度孔金属蜂巢体、金属支撑体和三维内外肋管,其中,复合梯度孔金属蜂巢体包括孔隙率为ε1的金属蜂巢过滤体,孔隙率为ε2的金属蜂巢蓄换热体,孔隙率为ε3的金属蜂巢蓄换热体和孔隙率为ε4的金属蜂巢蓄换热体,三维内外肋管包括三维外肋和三维内肋,孔隙率为ε1的金属蜂巢过滤体位于复合梯度孔金属蜂巢体的最外层,孔隙率为ε1的金属蜂巢过滤体内部包裹孔隙率为ε2的金属蜂巢蓄换热体,孔隙率为ε3的金属蜂巢蓄换热体和孔隙率为ε4的金属蜂巢蓄换热体,金属支撑体夹于孔隙率为ε1的金属蜂巢过滤体、孔隙率为ε2的金属蜂巢蓄换热体、孔隙率为ε3的金属蜂巢蓄换热体和孔隙率为ε4的金属蜂巢换热体相交处,三维内外肋管位于复合梯度孔金属蜂巢体内侧。复合梯度孔金属蜂巢体由四层具有不同孔隙率的金属蜂巢体通过层叠堆置而成,复合梯度孔金属蜂巢体由外而内分别是孔隙率为ε1的金属蜂巢过滤体、组合金属蜂巢蓄换热体一、组合金属蜂巢蓄换热体二和孔隙率为ε4的金属蜂巢蓄换热体,其中,组合金属蜂巢蓄换热体一为孔隙率为ε2的金属蜂巢蓄换热体、孔隙率为ε3的金属蜂巢蓄换热体和孔隙率为ε4的金属蜂巢蓄换热体首尾依次相接,组合金属蜂巢蓄换热体二为孔隙率为ε3的金属蜂巢蓄换热体和孔隙率为ε4的金属蜂巢蓄换热体首尾相接;复合梯度孔金属蜂巢体孔隙率关系为ε1<ε2<ε3<ε4。复合梯度孔金属蜂巢体主要起到净化烟气、蓄热并引导烟气自适应流动的作用。其中,蓄热作用可以稳定时变性烟气工况条件下的余热回收效率;自适应流动可以引导烟气贴壁运动,增强换热性能。复合梯度孔蜂巢体可根据装置的应用环境和烟气温度选择合适的形状和金属材质。孔隙率为ε1的金属蜂巢过滤体由直径为19-100μm的耐热金属纤维立体斜纹编织而成,表面形成三维结构滤孔,孔径为3-25μm,孔隙率为0.35-0.38。孔隙率为ε2的金属蜂巢蓄换热体、孔隙率为ε3的金属蜂巢蓄换热体和孔隙率为ε4的金属蜂巢蓄换热体由耐热不锈钢金属丝钩编而成的具有弹性结构的高孔隙率、大比表面积结构;其中,孔隙率为ε2的金属蜂巢蓄换热体金属丝直径为0.1-0.6mm,金属蜂巢孔径为0.1-0.8mm,孔隙率为0.50-0.65,比表面积为1000~1500m2/m3;孔隙率为ε3的金属蜂巢蓄换热体金属丝直径为0.6-1.0mm,金属蜂巢孔径为0.8-1.9mm,孔隙率为0.65-0.80,比表面积为500~1000m2/m3;孔隙率为ε4的金属蜂巢蓄换热体金属丝直径为1.5-5mm,金属蜂巢孔径为2.5-12mm,孔隙率为0.80-0.95,比表面积为100~500m2/m3。该结构形成了流动阻力梯度,即孔隙率越大,流动阻力越小;孔隙率越小,流动阻力越大。从而引导高温烟气自发地从小孔隙率蜂巢处流向大孔隙率蜂巢处,形成自适应的贴壁流动,增强高温烟气的流动换热。金属支撑体为带有正方形通孔的2-5mm厚度的不锈钢板,孔隙率为0.75-0.90。金属支撑体不仅起到支撑金属蜂巢的固定作用,还起到蓄热并强化换热的作用。三维内外肋管内壁面设置三维内肋,外壁面设置三维外肋。三维内外肋管为在光管外壁面和内壁面设置若干个三维凸起单元。三维内外肋管外径范围可为19-108mm,壁厚范围2-5mm,内、外肋高度范围为0.3-7mm,肋宽范围为1-4mm,周向间距范围为2-4mm,轴向间距范围为1-3mm,肋片厚度范围为0.2-1mm。在使用过程中,根据工艺要求设计复合梯度孔蜂巢体尺寸及结构以满足处理烟气温度与含尘量的需求。采用上述装置进行除尘换热的方法,具体为:换热介质在三维内外肋管内部流动,高温高含尘烟气在外部流动。高温高含尘烟气通过孔隙率为ε1的金属蜂巢过滤体被净化,净化后的洁净高温烟气在孔隙率具有横纵向变化特性的组合金属蜂巢蓄换热体一、组合金属蜂巢蓄换热体二和孔隙率为ε4的金属蜂巢蓄换热体中实现蓄热过程和自适应贴壁流动,并与三维内外肋管内的换热介质进行间接错流或逆流换热。其中,高温高含尘烟气温度为600℃-1200℃,含尘量为10-30g/Nm3。本技术的上述技术方案的有益效果如下:上述方案中,具有高效净化、充分换热、连续工作、强度高、寿命长等优点,且加工难度较小,成本较低,易于更换,是高温高含尘烟气连续除尘与高效蓄换热的新工艺。本技术克服了目前除尘设备无法在高温高含尘条件下高效除尘,换热设备在高温高含尘条件下换热效率低、体积大且易积灰等缺点,解决了高温高含尘条件下烟气连续除尘蓄换热一体化的技术难题。附图说明图1为本技术的基于梯度蜂巢体和三维肋管的除尘换热一体化装置的结构示意图;图2为图1中A-A剖面图;图3为三维内外肋结构示意图。其中:1-复合梯度孔金属蜂巢体;11-孔隙率为ε1的金属蜂巢过滤体;12-孔隙率为ε2的金属蜂巢蓄换热体;13-孔隙率为ε3的金属蜂巢蓄换热体;14-孔隙率为ε4的金属蜂巢蓄换热体;2-金属支撑体;3-三维内外肋管;31-三维外肋;32-三维本文档来自技高网
...

【技术保护点】
1.一种基于梯度蜂巢体和三维肋管的除尘换热一体化装置,其特征在于:包括复合梯度孔金属蜂巢体(1)、金属支撑体(2)和三维内外肋管(3),其中,复合梯度孔金属蜂巢体(1)包括孔隙率为ε1的金属蜂巢过滤体(11),孔隙率为ε2的金属蜂巢蓄换热体(12),孔隙率为ε3的金属蜂巢蓄换热体(13)和孔隙率为ε4的金属蜂巢蓄换热体(14),三维内外肋管(3)包括三维外肋(31)和三维内肋(32),孔隙率为ε1的金属蜂巢过滤体(11)位于复合梯度孔金属蜂巢体(1)的最外层,孔隙率为ε1的金属蜂巢过滤体(11)内部包裹孔隙率为ε2的金属蜂巢蓄换热体(12),孔隙率为ε3的金属蜂巢蓄换热体(13)和孔隙率为ε4的金属蜂巢蓄换热体(14),金属支撑体(2)夹于孔隙率为ε1的金属蜂巢过滤体(11)、孔隙率为ε2的金属蜂巢蓄换热体(12)、孔隙率为ε3的金属蜂巢蓄换热体(13)和孔隙率为ε4的金属蜂巢蓄换热体(14)相交处,三维内外肋管(3)位于复合梯度孔金属蜂巢体(1)内侧。

【技术特征摘要】
1.一种基于梯度蜂巢体和三维肋管的除尘换热一体化装置,其特征在于:包括复合梯度孔金属蜂巢体(1)、金属支撑体(2)和三维内外肋管(3),其中,复合梯度孔金属蜂巢体(1)包括孔隙率为ε1的金属蜂巢过滤体(11),孔隙率为ε2的金属蜂巢蓄换热体(12),孔隙率为ε3的金属蜂巢蓄换热体(13)和孔隙率为ε4的金属蜂巢蓄换热体(14),三维内外肋管(3)包括三维外肋(31)和三维内肋(32),孔隙率为ε1的金属蜂巢过滤体(11)位于复合梯度孔金属蜂巢体(1)的最外层,孔隙率为ε1的金属蜂巢过滤体(11)内部包裹孔隙率为ε2的金属蜂巢蓄换热体(12),孔隙率为ε3的金属蜂巢蓄换热体(13)和孔隙率为ε4的金属蜂巢蓄换热体(14),金属支撑体(2)夹于孔隙率为ε1的金属蜂巢过滤体(11)、孔隙率为ε2的金属蜂巢蓄换热体(12)、孔隙率为ε3的金属蜂巢蓄换热体(13)和孔隙率为ε4的金属蜂巢蓄换热体(14)相交处,三维内外肋管(3)位于复合梯度孔金属蜂巢体(1)内侧。2.根据权利要求1所述的基于梯度蜂巢体和三维肋管的除尘换热一体化装置,其特征在于:所述复合梯度孔金属蜂巢体(1)由四层具有不同孔隙率的金属蜂巢体通过层叠堆置而成,复合梯度孔金属蜂巢体(1)由外而内分别是孔隙率为ε1的金属蜂巢过滤体(11)、组合金属蜂巢蓄换热体一、组合金属蜂巢蓄换热体二和孔隙率为ε4的金属蜂巢蓄换热体(14),其中,组合金属蜂巢蓄换热体一为孔隙率为ε2的金属蜂巢蓄换热体(12)、孔隙率为ε3的金属蜂巢蓄换热体(13)和孔隙率为ε4的金属蜂巢蓄换热体(14)首尾依次相接,组合金属蜂巢蓄换热体二为孔隙率为ε3的金属蜂巢蓄换热体(13)和孔隙率为ε4的金属蜂巢蓄换热体(14...

【专利技术属性】
技术研发人员:廖强付乾丁玉栋程旻刘向军陈自勇曲恒宇周芳
申请(专利权)人:重庆大学北京科技大学
类型:新型
国别省市:重庆,50

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1