一种动态激发磁梯度仪的磁场测量方法技术

技术编号:22329190 阅读:40 留言:0更新日期:2019-10-19 12:05
本发明专利技术提供了一种动态激发磁梯度仪的磁场测量方法,包括:首先单片机通过控制电路进行双路直流脉冲产生、射频激发和信号调理时序控制,控制电路根据单片机时序信号同步控制双路射频激发电路和双路信号调理电路的分时工作;其次单片机与FPGA通信将测频信息转换为磁场数据并计算磁场梯度;然后将磁场数据存储在存储模块中并通过显示模块进行显示。本发明专利技术的有益效果是:本发明专利技术所提出的技术方案使用同一控制电路同步控制双路射频激发、直流脉冲和信号调理电路,保证双路拉莫尔信号产生和调理的同步性;使用FPGA对双路方波信号和标准信号进行同步计数,保证双路拉莫尔信号频率信息的同步测量。

A magnetic field measurement method of dynamic excitation gradiometer

【技术实现步骤摘要】
一种动态激发磁梯度仪的磁场测量方法
本专利技术涉及磁场测量领域,尤其涉及一种动态激发磁梯度仪的磁场测量方法。
技术介绍
动态极化磁力仪是一种基于NMR-DNP效应的的弱磁测量仪器,具有高精度、高灵敏度、低功耗和可连续测量的特点,被广泛应用于地球物理、航磁测量、卫星测磁、军事和各类工程领域。目前,国内外大多数磁力仪都是单通道的即工作时只装配一个传感器,只能测量磁场的总场强度,但是磁总场强度受外部磁环境的影响很大,例如磁场均匀度、磁场日变以及周围环境温度变化,并且单通道磁力仪在磁异常探测应用中灵敏度稍低,所以需通过测量磁场梯度来寻找磁异常。磁梯度仪的实施使用两个磁传感器进行磁场梯度测量,因此就需要磁梯度仪激发-测量系统完成同步激发并进行信号的同步测量,目前的系统尚未能满足这些要求。
技术实现思路
为了解决上述问题,本专利技术提供了一种动态激发磁梯度仪的磁场测量方法,应用于一种动态激发磁梯度仪的磁场测量系统中;所述一种动态激发磁梯度仪的磁场测量系统包括:第一激发测量模块、第二激发测量模块、控制电路、FPGA、单片机和磁传感器;所述第一激发测量模块包括:第一直流脉冲电路、第一射频激发电路和第一信号调理电路;所述第二激发测量模块包括:第二直流脉冲电路、第二射频激发电路和第二信号调理电路;所述磁传感器有两个,分别为第一磁传感器和第二磁传感器;所述第一直流脉冲电路、所述第一射频激发电路、所述第一信号调理电路、所述第二直流脉冲电路、所述第二射频激发电路和所述第二信号调理电路的输入端均通过所述控制电路连接至所述单片机的输出端;所述第一直流脉冲电路和所述第一射频激发电路的输出端均连接至所述第一磁传感器的输入端;所述第一磁传感器的输出端连接至所述第一信号调理电路的输入端;所述第二直流脉冲电路和所述第二射频激发电路的输出端均连接至所述第二磁传感器的输入端;所述第二磁传感器的输出端连接至所述第二信号调理电路的输入端;所述第一调理电路的输出端和所述第二调理电路的输出端分别连接至所述FPGA的两个输入端;所述FPGA的输出端连接至所述单片机的输入端;且所述FPGA的外围电路连接有一个任意频率的晶振,用于提供标准信号,所述标准信号的频率即为所述晶振的频率;所述一种动态激发磁梯度仪的磁场测量方法,具体包括如下步骤:S101:单片机通过所述控制电路对所述第一射频激发电路和所述第二射频激发电路分别发送脉冲信号,以控制所述第一射频激发电路和所述第二射频激发电路分别对所述第一磁传感器和所述第二磁传感器同时产生射频信号,且所述射频信号在整个工作过程中,持续存在;S102:所述单片机通过所述控制电路分别向所述第一直流脉冲电路和所述第二直流脉冲电路同时发送控制脉冲信号,进而分别控制所述第一直流脉冲电路和所述第二直流脉冲电路同时产生直流脉冲至所述第一磁传感器和第二磁传感器,并延时yms,以等待所述直流脉冲完全消失,防止所述直流脉冲对所述第一磁传感器和所述第二磁传感器的干扰;其中,y为预设的延时时间,且y>0;S103:在延时结束后,所述第一磁传感器和所述第二磁传感器对磁场信号进行采集,分别得到第一拉莫尔信号和第二拉莫尔信号;S104:所述第一信号调理电路接收所述第一拉莫尔信号,并对所述第一拉莫尔信号进行调理,得到磁场信号的第一方波信号;同时所述第二信号调理电路接收所述第二拉莫尔信号,并对所述第二拉莫尔信号进行调理,得到磁场信号的第二方波信号;S105:所述第一方波信号和所述第二方波信号被同时发送至所述FPGA,所述FPGA根据接收到的所述第一方波信号、所述第二方波信号和标准信号分别进行计数,得到磁场信号的计数信息和标准信号的计数信息,并将磁场信号的计数信息和标准信号的计数信息发送至所述单片机;S106:所述单片机根据接收到的磁场信号的计数信息和标准信号的计数信息,计算得到磁场信号和频率。进一步地,步骤S101中,所述射频信号的频率为60.7MHz。进一步地,步骤S102中,y的取值为30。进一步地,步骤S105中,所述第一方波信号和所述第二方波信号的频率范围均为[850Hz,4300Hz]。进一步地,步骤S106中,频率和磁场信号的计算公式如下:上式中,fx是待测的频率,C为待测的磁场信号;Nx为所述磁场信号的计数信息,Ns为所述标准信号的计数信息;fs为所述标准信号的频率。进一步地,所述一种动态激发磁梯度仪的磁场测量系统还包括电源模块、存储模块和显示模块;所述电源模块用于为各模块供电,所述存储模块电性连接至所述单片机,用于存储所述磁场信号和频率,所述显示模块电性连接至所述单片机,用于显示所述磁场信号和频率。进一步地,所述电源模块包括模拟电源和数字电源;数字电源用于为所述单片机和所述FPGA供电,所述模拟电源用于为系统的其它电路供电,且所述模拟电源具有低噪声特性。进一步地,所述第一信号调理电路和所述第二信号调理电路均包括谐振放大电路、前级放大电路、后级放大电路和比较器;谐振放大电路的输入端连接至磁传感器,输出端连接至所述前级放大电路的输入端,前级放大电路的输出端连接至后级放大电路的输入端,后级放大电路的输出端连接至比较器的输入端,比较器的输出端连接至FPGA。进一步地,所述前级放大电路采用低噪声的JFET。本专利技术提供的技术方案带来的有益效果是:本专利技术所提出的技术方案具备以下优点:1)使用同一控制电路同步控制双路射频激发、直流脉冲和信号调理电路,保证双路拉莫尔信号产生和调理的同步性;2)使用FPGA对双路方波信号和标准信号进行同步计数,保证双路拉莫尔信号频率信息的同步测量;3)磁梯度仪激发-测量系统具有低噪声信号调理技术和低噪声测频技术,保证磁场梯度较大时的正常探测。附图说明下面将结合附图及实施例对本专利技术作进一步说明,附图中:图1是本专利技术实施例中一种动态激发磁梯度仪的磁场测量方法的流程图;图2是本专利技术实施例中一种动态激发磁梯度仪的磁场测量系统的结构框图;图3是本专利技术实施例中信号调理电路的的示意图。具体实施方式为了对本专利技术的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本专利技术的具体实施方式。本专利技术的实施例提供了一种动态激发磁梯度仪的磁场测量方法,应用于如图2所示的一种动态激发磁梯度仪的磁场测量系统中;所述一种动态激发磁梯度仪的磁场测量系统包括:第一激发测量模块、第二激发测量模块、控制电路、FPGA、单片机和磁传感器;所述第一激发测量模块包括:第一直流脉冲电路、第一射频激发电路和第一信号调理电路;所述第二激发测量模块包括:第二直流脉冲电路、第二射频激发电路和第二信号调理电路;所述磁传感器有两个,分别为第一磁传感器和第二磁传感器;所述第一直流脉冲电路、所述第一射频激发电路、所述第一信号调理电路、所述第二直流脉冲电路、所述第二射频激发电路和所述第二信号调理电路的输入端均通过所述控制电路连接至所述单片机的输出端;所述第一直流脉冲电路和所述第一射频激发电路的输出端均连接至所述第一磁传感器的输入端;所述第一磁传感器的输出端连接至所述第一信号调理电路的输入端;所述第二直流脉冲电路和所述第二射频激发电路的输出端均连接至所述第二磁传感器的输入端;所述第二磁传感器的输出端连接至所述第二信号调理电路的输入端;所述第一调理电路的输出端和所述第二调理电路的输出端本文档来自技高网...

【技术保护点】
1.一种动态激发磁梯度仪的磁场测量方法,应用于一种动态激发磁梯度仪的磁场测量系统中;其特征在于:所述一种动态激发磁梯度仪的磁场测量系统包括:第一激发测量模块、第二激发测量模块、控制电路、FPGA、单片机和磁传感器;所述第一激发测量模块包括第一直流脉冲电路、第一射频激发电路和第一信号调理电路;所述第二激发测量模块包括第二直流脉冲电路、第二射频激发电路和第二信号调理电路;所述磁传感器有两个,分别为第一磁传感器和第二磁传感器;所述第一直流脉冲电路、所述第一射频激发电路、所述第一信号调理电路、所述第二直流脉冲电路、所述第二射频激发电路和所述第二信号调理电路的输入端均通过所述控制电路连接至所述单片机的输出端;所述第一直流脉冲电路和所述第一射频激发电路的输出端均连接至所述第一磁传感器的输入端;所述第一磁传感器的输出端连接至所述第一信号调理电路的输入端;所述第二直流脉冲电路和所述第二射频激发电路的输出端均连接至所述第二磁传感器的输入端;所述第二磁传感器的输出端连接至所述第二信号调理电路的输入端;所述第一调理电路的输出端和所述第二调理电路的输出端分别连接至所述FPGA的两个输入端;所述FPGA的输出端连接至所述单片机的输入端;且所述FPGA的外围电路连接有一个任意频率的晶振,用于提供标准信号,所述标准信号的频率即为所述晶振的频率;所述一种动态激发磁梯度仪的磁场测量方法,具体包括如下步骤:S101:单片机通过所述控制电路对所述第一射频激发电路和所述第二射频激发电路分别发送脉冲信号,以控制所述第一射频激发电路和所述第二射频激发电路分别对所述第一磁传感器和所述第二磁传感器同时产生射频信号,且所述射频信号在整个工作过程中,持续存在;S102:所述单片机通过所述控制电路分别向所述第一直流脉冲电路和所述第二直流脉冲电路同时发送控制脉冲信号,进而分别控制所述第一直流脉冲电路和所述第二直流脉冲电路同时产生直流脉冲至所述第一磁传感器和第二磁传感器,并延时y ms,以等待所述直流脉冲完全消失,防止所述直流脉冲对所述第一磁传感器和所述第二磁传感器的干扰;其中,y为预设的延时时间,且y>0;S103:在延时结束后,所述第一磁传感器和所述第二磁传感器对磁场信号进行采集,分别得到第一拉莫尔信号和第二拉莫尔信号;S104:所述第一信号调理电路接收所述第一拉莫尔信号,并对所述第一拉莫尔信号进行调理,得到磁场信号的第一方波信号;同时所述第二信号调理电路接收所述第二拉莫尔信号,并对所述第二拉莫尔信号进行调理,得到磁场信号的第二方波信号;S105:所述第一方波信号和所述第二方波信号被同时发送至所述FPGA,所述FPGA根据接收到的所述第一方波信号、所述第二方波信号和标准信号分别进行计数,得到磁场信号的计数信息和标准信号的计数信息,并将磁场信号的计数信息和标准信号的计数信息发送至所述单片机;S106:所述单片机根据接收到的磁场信号的计数信息和标准信号的计数信息,计算得到磁场信号和频率。...

【技术特征摘要】
1.一种动态激发磁梯度仪的磁场测量方法,应用于一种动态激发磁梯度仪的磁场测量系统中;其特征在于:所述一种动态激发磁梯度仪的磁场测量系统包括:第一激发测量模块、第二激发测量模块、控制电路、FPGA、单片机和磁传感器;所述第一激发测量模块包括第一直流脉冲电路、第一射频激发电路和第一信号调理电路;所述第二激发测量模块包括第二直流脉冲电路、第二射频激发电路和第二信号调理电路;所述磁传感器有两个,分别为第一磁传感器和第二磁传感器;所述第一直流脉冲电路、所述第一射频激发电路、所述第一信号调理电路、所述第二直流脉冲电路、所述第二射频激发电路和所述第二信号调理电路的输入端均通过所述控制电路连接至所述单片机的输出端;所述第一直流脉冲电路和所述第一射频激发电路的输出端均连接至所述第一磁传感器的输入端;所述第一磁传感器的输出端连接至所述第一信号调理电路的输入端;所述第二直流脉冲电路和所述第二射频激发电路的输出端均连接至所述第二磁传感器的输入端;所述第二磁传感器的输出端连接至所述第二信号调理电路的输入端;所述第一调理电路的输出端和所述第二调理电路的输出端分别连接至所述FPGA的两个输入端;所述FPGA的输出端连接至所述单片机的输入端;且所述FPGA的外围电路连接有一个任意频率的晶振,用于提供标准信号,所述标准信号的频率即为所述晶振的频率;所述一种动态激发磁梯度仪的磁场测量方法,具体包括如下步骤:S101:单片机通过所述控制电路对所述第一射频激发电路和所述第二射频激发电路分别发送脉冲信号,以控制所述第一射频激发电路和所述第二射频激发电路分别对所述第一磁传感器和所述第二磁传感器同时产生射频信号,且所述射频信号在整个工作过程中,持续存在;S102:所述单片机通过所述控制电路分别向所述第一直流脉冲电路和所述第二直流脉冲电路同时发送控制脉冲信号,进而分别控制所述第一直流脉冲电路和所述第二直流脉冲电路同时产生直流脉冲至所述第一磁传感器和第二磁传感器,并延时yms,以等待所述直流脉冲完全消失,防止所述直流脉冲对所述第一磁传感器和所述第二磁传感器的干扰;其中,y为预设的延时时间,且y>0;S103:在延时结束后,所述第一磁传感器和所述第二磁传感器对磁场信号进行采集,分别得到第一拉莫尔信号和第二拉莫尔信号;S104:所述第一信号调理电路接收所述第一拉莫尔信号,并对所述第一拉莫尔信号进行调理,得到磁场信号的第一方波信号;同时所述第二信号调理电路接收所述...

【专利技术属性】
技术研发人员:董浩斌王冠中葛健罗望刘欢
申请(专利权)人:中国地质大学武汉
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1