当前位置: 首页 > 专利查询>鲁东大学专利>正文

一种心电图特征向量提取方法技术

技术编号:21902204 阅读:40 留言:0更新日期:2019-08-21 09:13
一种心电图特征向量提取方法,它包括:1)导入数据;2)去除心电信号的噪声;对数组变量S内每一个数组执行小波分解重构算法,结果存储为数组变量S1;3)提取R波;4)构建特征;5)对样本进行自动识别;6)输出分类结果a;与现有技术相比,本发明专利技术的优势是:本发明专利技术截取R波顶点前后1.2秒信号进行识别,有效减小了身份识别需要的信号采集时间。本方法中对训练集采用k‑means聚类,原理比较简单,实现很容易,收敛速度快。

A Method for Extracting ECG Eigenvector

【技术实现步骤摘要】
一种心电图特征向量提取方法
本专利技术涉及医学信号处理
,更确切地说一种心电图特征向量提取方法。
技术介绍
与传统的基于密码或ID卡的认证方式相比,生物识别技术(Biometrics)具有更高的安全度与可靠度,已逐渐成为国际研究的热点,并逐渐在不同的领域发挥着举足轻重的作用。近年来借助于人体内蕴的心电信号ECG(Electrocardiogram)进行身份识别的方法广受关注。ECG是从人体体表采集的反映心脏心动的电位信号,人体的生理条件差异使得ECG具有许多个体特征。相较指纹、语音以及手掌,ECG作为一种活体生物信号,具备易检测、难复制的特点。利用心电信号进行身份识别的定义为:给定一条心电信号,判定该信号所属人的身份。利用心电信号进行自动身份识别的系统或装置通常基于心电信号的模式识别技术进行实现,需要实现心电信号的特征提取和识别两个必要环节。在已公开的利用心电信号进行身份识别的装置和方法的专利技术中,在提取心电图特征向量时,特征向量往往通过一段较长时间的心电信号提取,存在两方面问题,一方面用户需要较长时间的等待进行心电信号采集,另一方面较大的数据量需要耗费更多的计算成本。因此关本文档来自技高网...

【技术保护点】
1. 一种心电图特征向量提取方法,它包括:1)导入数据从外部采集N个人的单导联心电信号,每人采集两条,N大于50,存储为数组变量S,共计2N条;对2N条心电信号的2N个标签存储为变量label_L;2)去除心电信号的噪声对数组变量S内每一个数组执行小波分解重构算法,结果存储为数组变量S1;3)提取R波在数组变量S1内每一个数组中找到m个R波峰值点位置,共计2N*m个位置,在每个位置前取99点,在每个位置后取100点,包含当前位置点共计取200点作为一条R波;2N*m个位置提取到2N*m条R波,依次放入2N*m行、200列的矩阵中,记该变量为Y,作为构建特征方法的输入信号;对应变量Y内2N*m条...

【技术特征摘要】
1.一种心电图特征向量提取方法,它包括:1)导入数据从外部采集N个人的单导联心电信号,每人采集两条,N大于50,存储为数组变量S,共计2N条;对2N条心电信号的2N个标签存储为变量label_L;2)去除心电信号的噪声对数组变量S内每一个数组执行小波分解重构算法,结果存储为数组变量S1;3)提取R波在数组变量S1内每一个数组中找到m个R波峰值点位置,共计2N*m个位置,在每个位置前取99点,在每个位置后取100点,包含当前位置点共计取200点作为一条R波;2N*m个位置提取到2N*m条R波,依次放入2N*m行、200列的矩阵中,记该变量为Y,作为构建特征方法的输入信号;对应变量Y内2N*m条R波的2N*m个标签存储为变量label;4)构建特征a.将Y中的R波划分训练集和测试集,把从N个人的第一条信号中提取的N*m条R波作为训练集,第二条信号中提取的N*m条R波,作为测试集,分别存放在N*m行、200列的矩阵中,记为train和test;从变量label中划分出训练集和测试集对应的标签,分别存放在长度为N*m的数组中,训练集标签记为train_label,测试集标签记为test_label;将训练集train和测试集test分别分割为N*m*20段,每一段长度为10,分别存放在N*m*20行、10列的矩阵中,记为train_f和test_f;(2)对train_f执行k-means聚类,设置聚类簇数为50,聚类后得到大小为50*10的矩阵,记为C1,将C1转置得到10*50的矩阵,记为C,对train_f和C计算欧式距离,计算结果存放在N*m*20行、50列的矩阵中,记为train_sample_f;对test_f和C计算欧式距离,计算结果存放在N*m*20行、50列的矩阵中,记为test_sample_f;(3)将训练集样本train_sample_f和测试集样本test_sample_f分别按照列优先的原则变维为N*m行、1000列的矩阵并归一化到[0,1]之间,记为train_sample和test_sample;train_sample即为构建好的测试集特征,test_sample即为构建好的测试集特征;5)对样本进行自动识别将训练集特征train_sample进行稀疏,把稀疏后的训练集特征以及对应的标签tra...

【专利技术属性】
技术研发人员:刘通李伟臧睦君邹海林柳婵娟周树森赵玲玲
申请(专利权)人:鲁东大学
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1