当前位置: 首页 > 专利查询>吉林大学专利>正文

基于土壤粒径分布的多尺度仿生减阻表面结构设计方法技术

技术编号:21772164 阅读:29 留言:0更新日期:2019-08-03 21:41
一种基于土壤粒径分布的多尺度仿生减阻表面结构设计方法,该方法以十一个步骤实现。机械触土部件与土壤相互作用时,土壤的理化性质决定了机械触土部件与土壤接触时阻力的大小,土壤类型不同时,机械触土部件阻力影响因素也不同。本发明专利技术可根据不同的土壤类型,设计出不同的仿生非光滑表面结构,且从理论角度论证了仿生非光滑表面结构高度与两结构间间距,以及机械触土部件运动速度的关系。与现有技术相比,本发明专利技术可大幅度缩短仿生设计周期,且在仿生非光滑减阻表面设计上能更加优化减阻效果,获取十分优异的仿生非光滑减阻表面。

Design Method of Multi-scale Bionic Drag Reduction Surface Structure Based on Soil Size Distribution

【技术实现步骤摘要】
基于土壤粒径分布的多尺度仿生减阻表面结构设计方法
本专利技术涉及仿生减阻表面结构
,尤其涉及的是基于土壤粒径分布的多尺度仿生减阻表面结构设计方法。
技术介绍
统计资料表明,摩擦消耗掉全世界1/3的一次性能源,减小摩擦阻力,不仅可以取得显著的经济效益,而且可以有效地节约能源和资源、改善生态环境、消除安全隐患并提高生命质量。因此,学者们对减阻技术的探索从未停歇,而气体、液体、固体三种不同的介质在减阻技术上的应用原理有较大不同。机械触土部件的减阻属于固体中的散体减阻问题,由于介质组成成分的复杂性限制了机械触土部件减阻技术的发展。近年来,仿生学的快速发展为机械触土部件的减阻技术提供了新思路,而其中的非光滑表面减阻技术在众多仿生减阻技术中占有较大的比例,在生产实际中有着广泛的应用。例如,任露泉、李建桥等通过对蜣螂、穿山甲等大量土壤动物体表非光滑表面研究,设计出仿生减阻推土板及仿生犁壁,并验证了其优异的减阻效果。然而,现有仿生非光滑表面减阻技术多数依赖于逆向工程,提取动物非光滑表面形态,运用相似原理加工出仿生非光滑表面,并通过大量的实验对模型加以修正。这种方法既耗时耗力,又不一定能得到想要的结构,且对减阻效果很难进行优化,无法直接从工业设计的角度给出非光滑表面结构的具体高度与间距间的关系,浪费大量的人力物力。因此,现有技术有待于进一步的改进。
技术实现思路
鉴于上述现有技术中的不足之处,本专利技术的目的在于提供一种基于土壤粒径分布的多尺度仿生表面结构设计方法,克服现有技术中还未公开的如何对仿生非光滑表面进行多尺度结构设计的缺陷。本专利技术包括以下步骤:一.根据机械触土部件的工作环境,确定土壤类型;二.在机械触土部件的工作环境中取土采样,取样时保证覆盖工作环境中绝大部分的土壤类型;三.将所采土样放置在一系列的筛子中进行筛分,筛孔尺寸从大到小,最大筛孔尺寸为4.75mm,目数为4目,最小筛孔尺寸为0.150mm,目数为100目,依次将筛分出来的土壤放置在电子天平中称重;四.将从最小筛孔尺寸中筛出来的土壤称重后取样,样品称重后放入激光粒度分析仪中测量样品粒径分布的百分比;五.结合步骤三和步骤四,将大尺寸的土壤粒径和小尺寸的土壤粒径结合起来,做出所测的土壤的整体累计粒径分布图;六.根据步骤五的粒径分布图,确定当累计粒径分布达到50%时,对应的粒径分布尺寸的大小,记为中值粒径;七.重复步骤三至步骤六,依次测定不同类型土样的粒径分布图,获得中值粒径Dz,取所有类型土样中值粒径Dz的平均值,记为Dzp;八.根据土样中值粒径的平均值Dzp确定仿生非光滑表面结构高度h,即h=kD×Dzp,式中,kD为土壤粒径修正系数,这一修正系数根据触土部件整体尺寸,工况条件,非光滑表面结构形态而定,kD最小值为10,h的最大值不超过触土部件整体尺寸L的十分之一;九.依据仿生非光滑表面结构高度h,确定两个结构间的间距S,非光滑表面结构高度h与两结构间的间距S的关系为h=kC·S2;其中kC为部件尺寸修正系数,与机械触土部件的尺寸有关,且与触土部件运动速度的平方v2成反比,相同尺寸相同速度的触土部件尺寸修正系数kC相同,特别地,当速度v=1m/s时,kC的取值范围为0.1~5,且机械触土部件的尺寸越大,部件尺寸修正系数越小;十.当减阻要求较高时,可设置两级非光滑表面结构,第一级表面结构仍然按照步骤八和步骤九进行,第二级表面结构参照步骤八和步骤九,稍加修正,其中,步骤八中所述的整体尺寸L此时变为两个第一级非光滑表面结构间的间距,记为L′,仿生非光滑表面结构高度h变为h′,h′<h,触土部件尺寸修正系数kC变为k′C,kD最小值为10,步骤九中,非光滑表面结构高度h′与两结构间的间距S′间的关系变为h′=k′C·S′2,当h′与h大小在同一数量级时,k′C与kC可取同一数值,当第二级非光滑表面结构较小时,k′C取值应大于kC;十一.在特殊的机械触土部件表面,需要有更好的减阻效果时,可重复步骤八至步骤十,加工出第三级结构,直至更多级结构,具体参数选择参照步骤十,需要保证的是步骤八所述的土壤粒径修正系数kD最小值为10。本专利技术的有益效果:机械触土部件与土壤相互作用时,土壤的理化性质决定了机械触土部件与土壤接触时阻力的大小,土壤类型不同时,机械触土部件阻力影响因素也不同。本专利技术可根据不同的土壤类型,设计出不同的仿生非光滑表面结构,且从理论角度论证了仿生非光滑表面结构高度与两结构间间距,以及机械触土部件运动速度的关系。与现有技术相比,可大幅度缩短仿生设计周期,且在仿生非光滑减阻表面设计上能更加优化减阻效果,获取十分优异的仿生非光滑减阻表面。附图说明图1是本专利技术的一级仿生结构示意图。图2是本专利技术的两级仿生结构示意图。图3是本专利技术中的一种土壤粒径分布图。图4是本专利技术参考案例一的堆焊方法具体实施案例。图5是本专利技术参考案例二的切削法具体实施案例。图6是本专利技术参考案例三的金属丝织法具体实施案例。具体实施方式参阅图1至图3所示,本专利技术包括以下步骤:一.根据机械触土部件的工作环境,确定土壤类型;二.在机械触土部件的工作环境中取土采样,取样时保证覆盖工作环境中绝大部分的土壤类型;三.将所采土样放置在一系列的筛子中进行筛分,筛孔尺寸从大到小,最大筛孔尺寸为4.75mm,目数为4目,最小筛孔尺寸为0.150mm,目数为100目,依次将筛分出来的土壤放置在电子天平中称重;四.将从最小筛孔尺寸中筛出来的土壤称重后取样,样品称重后放入激光粒度分析仪中测量样品粒径分布的百分比;五.结合步骤三和步骤四,将大尺寸的土壤粒径和小尺寸的土壤粒径结合起来,做出所测的土壤的整体累计粒径分布图;六.根据步骤五的粒径分布图,确定当累计粒径分布达到50%时,对应的粒径分布尺寸的大小,记为中值粒径;七.重复步骤三至步骤六,依次测定不同类型土样的粒径分布图,获得中值粒径Dz,取所有类型土样中值粒径Dz的平均值,记为Dzp;八.根据土样中值粒径的平均值Dzp确定仿生非光滑表面结构高度h,即h=kD×Dzp,式中,kD为土壤粒径修正系数,这一修正系数根据触土部件整体尺寸,工况条件,非光滑表面结构形态而定,kD最小值为10,h的最大值不超过触土部件整体尺寸L的十分之一;九.依据仿生非光滑表面结构高度h,确定两个结构间的间距S,非光滑表面结构高度h与两结构间的间距S的关系为h=kC·S2;其中kC为部件尺寸修正系数,与机械触土部件的尺寸有关,且与触土部件运动速度的平方v2成反比,相同尺寸相同速度的触土部件尺寸修正系数kC相同,特别地,当速度v=1m/s时,kC的取值范围为0.1~5,且机械触土部件的尺寸越大,部件尺寸修正系数越小;十.当减阻要求较高时,可设置两级非光滑表面结构,第一级表面结构仍然按照步骤八和步骤九进行,第二级表面结构参照步骤八和步骤九,稍加修正,其中,步骤八中所述的整体尺寸L此时变为两个第一级非光滑表面结构间的间距,记为L′,仿生非光滑表面结构高度h变为h′,h′<h,触土部件尺寸修正系数kC变为k′C,kD最小值为10,步骤九中,非光滑表面结构高度h′与两结构间的间距S′间的关系变为h′=k′C·S′2,当h′与h大小在同一数量级时,k′C与kC可取同一数值,当第二级非光滑表面结构较小时,k′C本文档来自技高网...

【技术保护点】
1.一种基于土壤粒径分布的多尺度仿生减阻表面结构设计方法,其特征在于:包括以下步骤:一.根据机械触土部件的工作环境,确定土壤类型;二.在机械触土部件的工作环境中取土采样,取样时保证覆盖工作环境中绝大部分的土壤类型;三.将所采土样放置在一系列的筛子中进行筛分,筛孔尺寸从大到小,最大筛孔尺寸为4.75mm,目数为4目,最小筛孔尺寸为0.150mm,目数为100目,依次将筛分出来的土壤放置在电子天平中称重;四.将从最小筛孔尺寸中筛出来的土壤称重后取样,样品称重后放入激光粒度分析仪中测量样品粒径分布的百分比;五.结合步骤三和步骤四,将大尺寸的土壤粒径和小尺寸的土壤粒径结合起来,做出所测的土壤的整体累计粒径分布图;六.根据步骤五的粒径分布图,确定当累计粒径分布达到50%时,对应的粒径分布尺寸的大小,记为中值粒径;七.重复步骤三至步骤六,依次测定不同类型土样的粒径分布图,获得中值粒径Dz,取所有类型土样中值粒径Dz的平均值,记为Dzp;八.根据土样中值粒径的平均值Dzp确定仿生非光滑表面结构高度h,即h=kD×Dzp,式中,kD为土壤粒径修正系数,这一修正系数根据触土部件整体尺寸,工况条件,非光滑表面结构形态而定,kD最小值为10,h的最大值不超过触土部件整体尺寸L的十分之一;九.依据仿生非光滑表面结构高度h,确定两个结构间的间距S,非光滑表面结构高度h与两结构间的间距S的关系为h=kc·s...

【技术特征摘要】
1.一种基于土壤粒径分布的多尺度仿生减阻表面结构设计方法,其特征在于:包括以下步骤:一.根据机械触土部件的工作环境,确定土壤类型;二.在机械触土部件的工作环境中取土采样,取样时保证覆盖工作环境中绝大部分的土壤类型;三.将所采土样放置在一系列的筛子中进行筛分,筛孔尺寸从大到小,最大筛孔尺寸为4.75mm,目数为4目,最小筛孔尺寸为0.150mm,目数为100目,依次将筛分出来的土壤放置在电子天平中称重;四.将从最小筛孔尺寸中筛出来的土壤称重后取样,样品称重后放入激光粒度分析仪中测量样品粒径分布的百分比;五.结合步骤三和步骤四,将大尺寸的土壤粒径和小尺寸的土壤粒径结合起来,做出所测的土壤的整体累计粒径分布图;六.根据步骤五的粒径分布图,确定当累计粒径分布达到50%时,对应的粒径分布尺寸的大小,记为中值粒径;七.重复步骤三至步骤六,依次测定不同类型土样的粒径分布图,获得中值粒径Dz,取所有类型土样中值粒径Dz的平均值,记为Dzp;八.根据土样中值粒径的平均值Dzp确定仿生非光滑表面结构高度h,即h=kD×Dzp,式中,kD为土壤粒径修正系数,这一修正系数根据触土部件整体尺寸,工况条件,非光滑表面结构形态而定,kD最小值为10,h的最大值不超过触土部件整体尺寸L的十分之一;九.依据仿生非光滑表面结构高度h,确定两个结构间的间距S,非光滑表面结构高度h与两结构间的间距S的关系为h=kc·s2;其中kc为部件尺寸修正系数,与机械触土部件的尺寸有关,且与触土部件运动速度的平方v2成反比,相同尺寸相同速度的触土部件尺寸修正系数kc相同,特别地,当速度v=1m/s时,kc的取值范围为0.1~5,且机械触土部件的尺寸越大,部件尺寸修正系数越小;十.当减阻要求较高时,可设置两级非光滑表面结构,第一级表面结构仍然按照步骤八和步骤九进行,第二级表面结构参照步骤八和步骤九,稍加修正,其中,步骤八中所述的整体尺寸L此时变为两个第一级非光滑表面结构间的间距,记为L′,仿...

【专利技术属性】
技术研发人员:吴宝广佟金马云海孙霁宇庄健宋泽来蒋啸虎高子博李金光
申请(专利权)人:吉林大学
类型:发明
国别省市:吉林,22

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1