一种双电磁铁并联锁定装置及其工作方法制造方法及图纸

技术编号:21609342 阅读:43 留言:0更新日期:2019-07-13 19:34
本发明专利技术公开一种双电磁铁并联锁定装置及其工作方法,所述包括拉杆、第一和第二滚轮、第一和第二旋转杆、连接片、第一和第二销轴、第一和第二电磁铁、第一和第二电磁铁吸片、基座、小拉簧、拉片,基座上部分别固定设置有第一和第二电磁铁,第一和第二电磁铁相对的两个端面分别配合设置有第一和第二电磁铁吸片,第一和第二电磁铁吸片分别与位于二者之间的第一和第二旋转杆的后端铰接,第一和第二销轴穿过连接片的两端实现与第一和第二旋转杆的铰接,第一和第二旋转杆的前端分别与第一和第二滚轮铰接,第一和第二滚轮分别卡接在拉片两端的弧形凹槽内。本发明专利技术通过电磁铁和电磁铁吸片配合的电磁解锁方式了实现微纳卫星的快速、稳定的解锁分离。

A Double Electromagnet Parallel Locking Device and Its Working Method

【技术实现步骤摘要】
一种双电磁铁并联锁定装置及其工作方法
本专利技术属于锁具
,特别涉及一种双电磁铁并联锁定装置及其工作方法。
技术介绍
微纳卫星(NanoSat)通常指质量小于10千克、具有实际使用功能的卫星。近年来,微纳卫星研制的热潮在世界范围内迅速兴起,2017年全球发射的小卫星占总发射卫星数量的70%以上,未来全球对1~50kg微纳卫星的年需求量将持续增加。作为卫星关键技术之一的解锁分离技术,是关系到卫星成功发射、正常入轨的核心技术,对卫星总体性能有着重要影响。微纳卫星体积小、质量轻、星表安装面积受限、抗冲击能力弱、搭载环境多变等特点,给其解锁分离装置的设计带来了难题。传统的卫星分离多采用离散分布的火工品点式和对接框式包带连接分离方案,前者的分离冲击大、同步指标低,后者附加质量大。虽然火工装置具有功能可靠、作用速度快、重量与体积小、标准化等一系列优点,但是微纳卫星质量轻、体积小,如果采用传统的火工分离方式,分离产生的冲击将会对卫星分离姿态造成较大影响,导致卫星不能按照设定的飞行姿态入轨,而且火药燃烧或者爆炸产生的有害气体可能会污染光学仪器等。因此,传统的卫星的锁定和解锁分离方案已经无法满足当前和未来微纳卫星的分离需求。
技术实现思路
针对上述存在的缺陷,本专利技术的目的在于提供一种作动时间短、可靠性高的双电磁铁并联锁定装置及其工作方法。为了实现上述目的,本专利技术采用的技术方案如下:一种双电磁铁并联锁定装置,包括拉杆、第一滚轮、第二滚轮、第一旋转杆、第二旋转杆、连接片、第一销轴、第二销轴、第一电磁铁、第二电磁铁、第一电磁铁吸片、第二电磁铁吸片、基座、小拉簧、拉片,所述基座的两侧上部分别固定设置有所述第一电磁铁和第二电磁铁,所述第一电磁铁和第二电磁铁相对的两个端面分别配合设置有所述第一电磁铁吸片和第二电磁铁吸片,所述第一电磁铁吸片和第二电磁铁吸片分别与位于二者之间的所述第一旋转杆和第二旋转杆的后端铰接,第一旋转杆和第二旋转杆在靠近后端的位置通过所述小拉簧实现弹性连接,所述连接片的中部与所述基座固定连接,所述第一销轴穿过所述连接片的一端实现第一旋转杆与所述连接片的铰接,所述第二销轴穿过所述连接片的另一端实现第二旋转杆与所述连接片的铰接,第一旋转杆和第二旋转杆的前端分别与所述第一滚轮和第二滚轮铰接,所述第一滚轮和第二滚轮分别卡接在所述拉片两端的与第一滚轮和第二滚轮配合的弧形凹槽内,所述拉片的中部所述拉杆的一端铰接连接。进一步地,所述拉杆的所述一端为一开口结构,所述拉片穿过所述拉杆的开口结构后通过穿过所述拉杆和所述拉片的固定轴实现铰接连接。进一步地,所述基座的中部具有一凹形块,所述第一旋转杆和第二旋转杆的后端位于所述凹形块的缺口的两侧。进一步地,所述小拉簧穿过所述凹形块的缺口连接所述第一旋转杆和第二旋转杆。进一步地,所述第一电磁铁和第二电磁铁为圆柱形。根据上述所述的双电磁铁并联锁定装置的工作方法,包括锁定过程和解锁过程,所述锁定过程包括:将所述第一电磁铁和第二电磁铁处于通电状态,此时第一电磁铁和第二电磁铁分别将第一电磁铁吸片和第二电磁铁吸片的端面紧紧吸住,小拉簧为拉伸状态,第一旋转杆和第二旋转杆通过第一滚轮和第二滚轮将拉片卡住限位从而实现锁定;所述解锁过程包括:控制第一电磁铁和/或第二电磁铁失电,此时第一电磁铁和/或第二电磁铁与第一电磁铁吸片和/或第二电磁铁吸片之间失去吸力,在小拉簧的拉力作用,第一旋转杆和/或第二旋转杆分别绕第一销轴和/或第二销轴转动,第一旋转杆和/或第二旋转杆前端的第一滚轮和/或第二滚轮从拉片两端的弧形凹槽中滑出解除对拉片的限位从而实现解锁。本专利技术与现有技术相比,其显著优点在于:(1)采用两个电磁铁进行双备份动作,只要有一电磁铁动作就可以成功实现分离,可靠性较高;(2)使用电磁铁进行分离的控制,相比于火工品类分离装置不会产生污染,而且冲击较小,对卫星姿态产生影响较小,相较于记忆合金类分离装置动作时间更短;(3)电磁铁可多次重复动作,方便进行地面分离试验验证,而火工类分离机构则无法进行多次动作试验。附图说明图1为本专利技术微纳卫星解锁分离装置整体结构爆炸图。图2为本专利技术微纳卫星解锁分离装置整体结构示意图。图3为本专利技术适配器结构示意图。图4为本专利技术基板结构示意图。图5为本专利技术双电磁铁并联锁定装置结构示意图。图6为本专利技术左右拨叉连接部分局部放大图。图7为本专利技术顶块滑轨结构示意图。图8为本专利技术右拨叉结构示意图。图9为本专利技术左拨叉结构示意图。图10为本专利技术大顶簧固定块结构示意图。图11为本专利技术连接片结构示意图。图12为本专利技术顶块结构示意图。图13为本专利技术拉杆结构示意图。图14为本专利技术旋转杆结构示意图。图15为本专利技术电磁铁吸片结构示意图。图16为本专利技术拉片结构示意图。图17为本专利技术基座结构示意图。图18为本专利技术电磁铁失电后与其相关的各个结构的动作示意图。图19为本专利技术电磁铁失电后基板上部件的动作示意图。图20为本专利技术电磁铁失电后卫星星体从适配器上被弹开分离的动作示意图。具体实施方式下面结合说明书附图,对本专利技术作进一步的说明。结合图1-17,以应用于微纳卫星中为例说明本专利技术双电磁铁并联锁定装置的结构和使用方式,所述微纳卫星包括卫星星体1、适配器2和基板3,所述卫星星体1的底面设置有两根伸出的连杆11,所述适配器2沿轴向设置有多个凹槽,每个凹槽中设置有一个卫星顶簧13,所述卫星顶簧13的底部抵靠于所述凹槽的底面,所述基板3的上表面设置有第一固定块24-1和第二固定块24-2,所述第一固定块24-1和第二固定块24-2均具有轴向通孔,所述第一固定块24-1和第二固定块24-2之间的所述适配器2的上表面设置有左拨叉转轴23-1和右拨叉转轴23-2,所述基板3位于适配器2的上部,双电磁铁并联锁定装置包括固定于基板3上表面的基座20,所述基座20的两侧上部分别固定设置有第一电磁铁18-1和第二电磁铁18-2,所述第一电磁铁18-1和第二电磁铁18-2相对的两个端面分别配合设置有第一电磁铁吸片19-1和第二电磁铁吸片19-2,所述第一电磁铁吸片19-1和第二电磁铁吸片19-2分别与位于二者之间的第一旋转杆15-1和第二旋转杆15-2的后端铰接,第一旋转杆15-1和第二旋转杆15-2在靠近后端的位置通过一小拉簧21实现弹性连接,一与所述基座20固定连接的连接片16通过设置于其两端的两个销轴17-1和17-2分别与第一旋转杆15-1和第二旋转杆15-2的中部铰接,第一旋转杆15-1和第二旋转杆15-2的前端分别与第一滚轮14-1和第二滚轮14-2铰接,所述第一滚轮14-1和第二滚轮14-2分别卡接在一拉片25两端的与第一滚轮14-1和第二滚轮14-2配合的弧形凹槽内,所述拉片25的中部与一拉杆10的后端铰接连接,所述拉杆10的前端与一顶块6固定连接,一被压缩的大顶簧8套设于所述拉杆10上,所述大顶簧8的前端抵靠于所述顶块6、后端抵靠于一与基板3固定连接的大顶簧固定块9,所述顶块6位于一与基板3固定连接的顶块滑轨4内,所述顶块6的上、下端面分别设置有第一顶块固定轴22-1和第二顶块固定轴22-2(如图12),所述第一顶块固定轴22-1和第二顶块固定轴22-2分别穿过左拨叉5和右拨叉7一端的上通槽和下通槽设置,所述左拨叉5和右拨叉7的本文档来自技高网...

【技术保护点】
1.一种双电磁铁并联锁定装置,其特征在于包括拉杆(10)、第一滚轮(14‑1)、第二滚轮(14‑2)、第一旋转杆(15‑1)、第二旋转杆(15‑2)、连接片(16)、第一销轴(17‑1)、第二销轴(17‑2)、第一电磁铁(18‑1)、第二电磁铁(18‑2)、第一电磁铁吸片(19‑1)、第二电磁铁吸片(19‑2)、基座(20)、小拉簧(21)、拉片(25),所述基座(20)的两侧上部分别固定设置有所述第一电磁铁(18‑1)和第二电磁铁(18‑2),所述第一电磁铁(18‑1)和第二电磁铁(18‑2)相对的两个端面分别配合设置有所述第一电磁铁吸片(19‑1)和第二电磁铁吸片(19‑2),所述第一电磁铁吸片(19‑1)和第二电磁铁吸片(19‑2)分别与位于二者之间的所述第一旋转杆(15‑1)和第二旋转杆(15‑2)的后端铰接,第一旋转杆(15‑1)和第二旋转杆(15‑2)在靠近后端的位置通过所述小拉簧(21)实现弹性连接,所述连接片(16)的中部与所述基座(20)固定连接,所述第一销轴(17‑1)穿过所述连接片(16)的一端实现第一旋转杆(15‑1)与所述连接片(16)的铰接,所述第二销轴(17‑2)穿过所述连接片(16)的另一端实现第二旋转杆(15‑2)与所述连接片(16)的铰接,第一旋转杆(15‑1)和第二旋转杆(15‑2)的前端分别与所述第一滚轮(14‑1)和第二滚轮(14‑2)铰接,所述第一滚轮(14‑1)和第二滚轮(14‑2)分别卡接在所述拉片(25)两端的与第一滚轮(14‑1)和第二滚轮(14‑2)配合的弧形凹槽内,所述拉片(25)的中部所述拉杆(10)的一端铰接连接。...

【技术特征摘要】
1.一种双电磁铁并联锁定装置,其特征在于包括拉杆(10)、第一滚轮(14-1)、第二滚轮(14-2)、第一旋转杆(15-1)、第二旋转杆(15-2)、连接片(16)、第一销轴(17-1)、第二销轴(17-2)、第一电磁铁(18-1)、第二电磁铁(18-2)、第一电磁铁吸片(19-1)、第二电磁铁吸片(19-2)、基座(20)、小拉簧(21)、拉片(25),所述基座(20)的两侧上部分别固定设置有所述第一电磁铁(18-1)和第二电磁铁(18-2),所述第一电磁铁(18-1)和第二电磁铁(18-2)相对的两个端面分别配合设置有所述第一电磁铁吸片(19-1)和第二电磁铁吸片(19-2),所述第一电磁铁吸片(19-1)和第二电磁铁吸片(19-2)分别与位于二者之间的所述第一旋转杆(15-1)和第二旋转杆(15-2)的后端铰接,第一旋转杆(15-1)和第二旋转杆(15-2)在靠近后端的位置通过所述小拉簧(21)实现弹性连接,所述连接片(16)的中部与所述基座(20)固定连接,所述第一销轴(17-1)穿过所述连接片(16)的一端实现第一旋转杆(15-1)与所述连接片(16)的铰接,所述第二销轴(17-2)穿过所述连接片(16)的另一端实现第二旋转杆(15-2)与所述连接片(16)的铰接,第一旋转杆(15-1)和第二旋转杆(15-2)的前端分别与所述第一滚轮(14-1)和第二滚轮(14-2)铰接,所述第一滚轮(14-1)和第二滚轮(14-2)分别卡接在所述拉片(25)两端的与第一滚轮(14-1)和第二滚轮(14-2)配合的弧形凹槽内,所述拉片(25)的中部所述拉杆(10)的一端铰接连接。2.根据权利要求1所述的双电磁铁并联锁定装置,其特征在于,所述拉杆(10)的所述一端为一开口结构,所述拉片(25)穿过所...

【专利技术属性】
技术研发人员:张翔周晗琼刘磊
申请(专利权)人:南京理工大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1