一种纳米尺度多孔硒/碲化物薄膜材料及其制备方法技术

技术编号:21267986 阅读:28 留言:0更新日期:2019-06-06 04:45
本发明专利技术涉及功能薄膜材料领域,具体为一种纳米尺度多孔硒(Se)/碲(Te)化物薄膜材料及其制备方法,该多孔薄膜材料作为微型热电能源器件、微型传感器等方面的应用。该多孔薄膜材料为均匀沉积在金属、半导体或绝缘体光滑基底表面上的硒/碲化物薄膜层,薄膜中含有高密度均匀分布的纳米尺度孔隙,纳米孔隙呈现为规则的几何多面体结构;孔隙表面为亚纳米级粗糙度,且孔隙与薄膜基体间存在晶体学取向关系。利用Se/Te元素低熔点、易扩散和聚集长大的特性,合成纳米尺度多孔结构。在薄膜面外方向,Te(Se)元素含量呈过饱和连续递增分布,通过退火处理方式成功制备纳米孔隙含量和大小分布连续可调控的Bi2Te3(Sb2Se3)薄膜。

A nanoscale porous selenium/telluride film material and its preparation method

The invention relates to the field of functional film materials, in particular to a nanoscale porous selenium (Se)/tellurium (Te) chemical film material and its preparation method, and its application as a micro thermoelectric energy device, micro sensor, etc. The porous film material is a selenium/telluride film layer uniformly deposited on the smooth surface of metals, semiconductors or insulators. The film contains high density uniformly distributed nano-scale pore, which presents regular geometric polyhedron structure. The pore surface is of sub-nano roughness, and there is a crystallographic orientation relationship between the pore and the film matrix. Nano-scale porous structures were synthesized by using the characteristics of low melting point, easy diffusion and aggregation growth of Se/Te elements. In the out-of-plane direction, the content of Te (Se) increases continuously with supersaturation. Bi2Te3 (Sb2Se3) thin films with continuously adjustable nanopore content and size distribution were successfully prepared by annealing.

【技术实现步骤摘要】
一种纳米尺度多孔硒/碲化物薄膜材料及其制备方法
本专利技术涉及功能薄膜材料领域,具体为一种纳米尺度多孔硒(Se)/碲(Te)化物薄膜材料及其制备方法,该多孔薄膜材料可作为微型热电能源器件、微型传感器等方面的应用。
技术介绍
硒(Se)/碲(Te)化物薄膜材料在日益蓬勃发展的功能材料与器件中扮演着重要的角色。其已被广泛应用于半导体领域,如:太阳能电池、热电换能和制冷、微电子等行业,其中热电
是其主要应用方向之一。热电材料是一种能够在没有其他特定外力或器件的协助下,能使“热”与“电”两种不同形态的能量相互转换的功能性半导体材料,可充分利用日常生产和生活中的废热发电,或是进行微区高热通量制冷,是当前我国资源高效利用、余热余能回收、微系统热量管理等科技专项中的重要研究内容,但其较低的转换效率是相关产业发展的突出技术瓶颈。热电材料性能与其自身热导率成反比,提高热电性能的主要策略之一为降低材料热导率。对于块体热电材料,可利用多种方式在材料中引入不同尺度散射机制来降低热导率。然而,薄膜热电材料中调控热导率的方式非常有限,如调制晶粒大小和第二相析出物来增强声子散射。因此,急需发展新的制备方法来解决这一棘手问题。
技术实现思路
本专利技术的目的在于提供一种纳米尺度多孔硒(Se)/碲(Te)化物薄膜材料及其制备方法,通过物理气相法沉积硒(Se)/碲(Te)元素梯度分布的硒(Se)/碲(Te)化物薄膜。即在薄膜面外方向,硒(Se)/碲(Te)元素含量呈现过饱和连续递增分布,再通过惰性还原气氛中长时间退火处理,合成一种纳米尺度多孔薄膜材料,并对其微观形貌进行表征、导热、导电和热电势性能进行测试,为进一步制备相关领域的微型器件做好材料准备。为了实现上述目的,本专利技术的技术方案如下:一种纳米尺度多孔硒/碲化物薄膜材料,该多孔薄膜材料为均匀沉积在金属、半导体或绝缘体光滑基底表面上的硒/碲化物薄膜层,薄膜中含有高密度均匀分布的纳米尺度孔隙,纳米孔隙呈现为规则的几何多面体结构;孔隙表面为亚纳米级粗糙度,且孔隙与薄膜基体间存在晶体学取向关系。所述的纳米尺度多孔硒/碲化物薄膜材料,硒/碲化物薄膜层为Bi2Te3、Sb2Se3、PbSe、SnSe、Bi2Se3、Cu2Se或Ag2Te。所述的纳米尺度多孔硒/碲化物薄膜材料,该纳米尺度多孔薄膜材料中的孔隙分布在薄膜晶界以及三晶界交汇处,孔隙多面体的一组平行面与基体薄膜晶粒的一低指数晶面平行。所述的纳米尺度多孔硒/碲化物薄膜材料,该纳米尺度多孔薄膜材料中的孔隙尺寸大小连续分布在1~100nm之间,呈类高斯分布特征,且平均孔径大小可调控;由薄膜退火前后硒/碲成分的变化估算得到,薄膜的孔隙率为1%~10%。所述的纳米尺度多孔硒/碲化物薄膜材料,纳米尺度多孔薄膜材料经过退火处理后,由于薄膜中过饱和硒/碲的析出和多孔结构的产生,薄膜材料的电导率相比退火前降低10%~20%,热电系数则升高50%~70%。所述的纳米尺度多孔硒/碲化物薄膜材料的制备方法,包括如下步骤:(1)基底表面处理:对基片表面进行清洗,使用酒精、丙酮和去离子水依次淋洗10~15分钟,然后在真空环境下100~150℃加热烘烤10~30分钟;(2)基片表面沉积碲成分过饱和连续梯度分布的碲化物薄膜层:将清洁处理后的基片置于镀膜样品盘上,在磁控沉积系统内,以共溅射方式沉积,生长条件为:溅射靶材为商用块体碲化物和Te靶材,背底真空度为(4~6)×10-4Pa,工作气体为0.4~0.6Pa的氩气,生长加热温度范围为250至350℃,碲化物沉积功率为60~100W,薄膜沉积共进行n个周期不同碲功率的生长,即碲靶材功率随着沉积的进行连续以1~20W大小间隔增加,保证碲的过饱和含量控制在0%~10%,每周期沉积薄膜厚度和薄膜总厚度可调;(3)基片表面沉积硒成分过饱和连续梯度分布的硒化物薄膜层:将清洁处理后的基片置于镀膜样品盘上,在磁控沉积系统内,以共溅射方式沉积,生长条件为:溅射靶材为商用块体硒化物和Se靶材,背景真空度为(4~6)×10-4Pa,工作气体为0.4~0.6Pa的氩气,生长加热温度范围为100至250℃,硒化物沉积功率为40~60W;薄膜沉积过程共进行n个周期不同Se功率的生长,Se靶材的功率随着沉积的进行连续以1~20W大小间隔增加;Se的过饱和含量控制在0%~10%,每周期沉积薄膜厚度和薄膜总厚度可调;(4)硒/碲化物薄膜退火处理将磁控溅射沉积得到的硒/碲化物薄膜放置在退火炉中,并利用机械泵抽取低真空,再通入惰性还原气体,并连续循环2~4次,降低退火炉中的氧气含量;最后将样品在200~400℃退火1~6h;最终成功制备得到含有表面为亚纳米级粗糙度,大小分布连续可调,且呈规则几何多面体的纳米孔隙薄膜材料。所述的纳米尺度多孔硒/碲化物薄膜材料的制备方法,步骤(1)中,基片采用硅氧化片;步骤(2)中,溅射靶材为商用块体碲化物Bi2Te3、PbTe或Ag2Te;步骤(3)中,溅射靶材为商用块体硒化物Sb2Se3、PbSe、SnSe、Bi2Se3或Cu2Se。所述的纳米尺度多孔硒/碲化物薄膜材料的制备方法,步骤(4)中,按体积百分比计,惰性还原气体由95%Ar和5%H2组成。所述的纳米尺度多孔硒/碲化物薄膜材料的制备方法,步骤(4)退火处理过程中,薄膜中不同周期硒/碲过饱和含量自下而上连续增加。所述的纳米尺度多孔硒/碲化物薄膜材料的制备方法,步骤(4)退火处理过程中,硒/碲原子一方面由于薄膜面外方向存在浓度梯度,在化学势差的作用下,通过晶界快速扩散达到成分均匀化;另一方面,由于面内方向硒/碲化物沿范德华片层间快速扩散性质,硒/碲原子扩散聚集析出成高结晶质量的、具有规则几何多面体形状的纳米颗粒;同时,在表面偏聚和蒸发以降低两相自由能的驱动下,薄膜中析出的硒/碲纳米颗粒重新溶解,硒/碲原子沿晶界快速通道向表面扩散聚集长大。本专利技术设计思想如下:硒(Se)/碲(Te)元素在合金材料中呈过饱和状态时易于扩散聚集和析出长大成具有规则几何多面体形状的晶体,该析出物晶体的尺寸大小和多少取决于硒(Se)/碲(Te)元素的过饱和度。这些析出物在自由能降低的驱动下,偏聚在晶界和三晶界交汇处。本专利技术设计制备硒(Se)/碲(Te)成分过饱和且连续梯度分布的硒(Se)/碲(Te)化物薄膜,在浓度梯度自由能的驱动下,高浓度硒(Se)/碲(Te)原子向低浓度区域扩散和聚集析出,实现调控不同尺寸和含量的析出物,在热激活作用下析出物再次溶解,通过晶界快速扩散至薄膜材料表面,从而在薄膜中形成纳米尺度多孔结构。以Bi2Te3薄膜为例,从Bi-Te相图可以看出(如图6所示),Bi2Te3合金材料中原子百分比超过61%的Te原子将以单质形式存在于材料当中,而退火处理将使过量Te由晶界扩散出体相材料,从而形成薄膜中的多孔结构。将Te过量不同程度的Bi2Te3薄膜进行退火处理,薄膜中由于Te原子聚集析出后形成孔隙率与退火处理前薄膜材料中过饱和Te含量成正相关关系。薄膜面外方向Te元素含量呈现过饱和连续递增分布时,不同Te浓度的区域将在晶界处聚集结晶成为不同尺寸且呈现规则几何多面体形状的Te颗粒;同时Te颗粒由晶界通道向薄膜表面进行扩散,最终成功制备出纳米孔隙含量和大小分布连续可调控的Bi本文档来自技高网...

【技术保护点】
1.一种纳米尺度多孔硒/碲化物薄膜材料,其特征在于:该多孔薄膜材料为均匀沉积在金属、半导体或绝缘体光滑基底表面上的硒/碲化物薄膜层,薄膜中含有高密度均匀分布的纳米尺度孔隙,纳米孔隙呈现为规则的几何多面体结构;孔隙表面为亚纳米级粗糙度,且孔隙与薄膜基体间存在晶体学取向关系。

【技术特征摘要】
1.一种纳米尺度多孔硒/碲化物薄膜材料,其特征在于:该多孔薄膜材料为均匀沉积在金属、半导体或绝缘体光滑基底表面上的硒/碲化物薄膜层,薄膜中含有高密度均匀分布的纳米尺度孔隙,纳米孔隙呈现为规则的几何多面体结构;孔隙表面为亚纳米级粗糙度,且孔隙与薄膜基体间存在晶体学取向关系。2.根据权利要求1所述的纳米尺度多孔硒/碲化物薄膜材料,其特征在于:硒/碲化物薄膜层为Bi2Te3、Sb2Se3、PbSe、SnSe、Bi2Se3、Cu2Se或Ag2Te。3.根据权利要求1所述的纳米尺度多孔硒/碲化物薄膜材料,其特征在于:该纳米尺度多孔薄膜材料中的孔隙分布在薄膜晶界以及三晶界交汇处,孔隙多面体的一组平行面与基体薄膜晶粒的一低指数晶面平行。4.根据权利要求1所述的纳米尺度多孔硒/碲化物薄膜材料,其特征在于:该纳米尺度多孔薄膜材料中的孔隙尺寸大小连续分布在1~100nm之间,呈类高斯分布特征,且平均孔径大小可调控;由薄膜退火前后硒/碲成分的变化估算得到,薄膜的孔隙率为1%~10%。5.根据权利要求1所述的纳米尺度多孔硒/碲化物薄膜材料,其特征在于:纳米尺度多孔薄膜材料经过退火处理后,由于薄膜中过饱和硒/碲的析出和多孔结构的产生,薄膜材料的电导率相比退火前降低10%~20%,热电系数则升高50%~70%。6.一种权利要求1至5之一所述的纳米尺度多孔硒/碲化物薄膜材料的制备方法,其特征在于,包括如下步骤:(1)基底表面处理:对基片表面进行清洗,使用酒精、丙酮和去离子水依次淋洗10~15分钟,然后在真空环境下100~150℃加热烘烤10~30分钟;(2)基片表面沉积碲成分过饱和连续梯度分布的碲化物薄膜层:将清洁处理后的基片置于镀膜样品盘上,在磁控沉积系统内,以共溅射方式沉积,生长条件为:溅射靶材为商用块体碲化物和Te靶材,背底真空度为(4~6)×10-4Pa,工作气体为0.4~0.6Pa的氩气,生长加热温度范围为250至350℃,碲化物沉积功率为60~100W,薄膜沉积共进行n个周期不同碲功率的生长,即碲靶材功率随着沉积的进行连续以1~20W大小间隔增加,保证碲的过饱和含量控制在0%~10%,每周期沉积薄膜厚度和薄膜总厚度可调;(3)...

【专利技术属性】
技术研发人员:邰凯平乔吉祥赵洋靳群康斯清姜辛
申请(专利权)人:中国科学院金属研究所
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1