一种具有低频宽带消音功能的声学超材料及其微加工方法技术

技术编号:21092973 阅读:31 留言:0更新日期:2019-05-11 11:14
本发明专利技术公开了一种具有低频宽带消音功能的声学超材料及其微加工方法。目前针对微系统封装和微传感器安全对低频噪声消除的实际需求,宽带消声功能和结构微型化是亟待解决的问题。本发明专利技术由下到上依次包括厚度为200~300um的硅衬底层、厚度为1~2um的SiO2刻蚀层、厚度为1~2um的SiNx振膜层。硅衬底层开有直径为400~600um的衬底微孔,SiO2刻蚀层开有直径为600~700um的背腔,背腔和衬底微孔同轴开设,且背腔半径大于衬底微孔半径;SiNx振膜层覆盖在SiO2刻蚀层上。本发明专利技术提供的MEMS结构相比于传统结构,声传输损耗增加了22.3%以上,实现了声波衰减的功能。

An Acoustic Supermaterial with Low Frequency Broadband Muffler Function and Its Microfabrication Method

【技术实现步骤摘要】
一种具有低频宽带消音功能的声学超材料及其微加工方法
本专利技术属于声学
,尤其是声学超材料及微机电系统(MEMS)声学器件
,具体涉及一种具有低频宽带消音功能的声学超材料及其微加工方法。
技术介绍
自然界或生活中的噪声大多数出现在低频范围(百赫兹量级),如雨声、跑步声、树叶随风飘动的飒飒声、工地施工的噪声、汽车行驶的噪声、火车振动声等等。然而,这些普遍存在的低频噪声很难消除,低频噪声控制仍然是声学领域的难题。近十年来,随着声学超构材料的出现和发展,低频噪声控制方面取得了阶段性进展。但是基于局部共振原理的传统声学超构材料直接产生的声学带宽很窄,不具有宽带消声效果,因而,在一定程度上缺乏实用性。另外,目前最先进的声学超构材料的单元尺寸在厘米量级或以上,这限制了其在微电子集成中的应用。针对微系统封装和微传感器安全对低频噪声消除的实际需求,宽带消声功能和结构微型化是亟待解决的问题。
技术实现思路
本专利技术的目的就是针对现有声学超构材料的带宽太窄和尺寸过大的问题,提供一种具有低频宽带消声功能的声学超构材料,其在200Hz到1200Hz的宽频带响应范围内,所产生的声波传播损耗(STL)比经典消声理论平均高6dB;其单元尺寸在亚毫米量级。本专利技术还提供了基于微机电系统(MEMS)技术的微加工方法。本专利技术的具有低频宽带消音功能的声学超材料,由下到上依次包括硅衬底层、SiO2刻蚀层、SiNx振膜层。硅衬底层开有贯穿衬底圆柱形的衬底微孔,SiO2刻蚀层开有贯穿SiO2刻蚀层的圆形通孔,形成圆柱形的背腔;背腔和衬底微孔同轴开设,且背腔半径大于衬底微孔半径;SiNx振膜层覆盖在SiO2刻蚀层上,SiNx振膜层与硅衬底层之间形成阻尼腔。所述硅衬底层的厚度为200~300um,衬底微孔的直径为400~600um。所述SiO2刻蚀层为厚度1~2um的SiO2薄膜,背腔的直径为600~700um。所述SiNx振膜层为厚度1~2um的SiNx薄膜。该声学超材料的基于MEMS微加工方法具体如下:步骤(1).采用化学气相沉积技术或热氧化法在厚度为200~300um的硅衬底层上沉积厚度为1~2um的SiO2薄膜,该SiO2薄膜即为SiO2刻蚀层;步骤(2).采用化学气相沉积技术在SiO2刻蚀层上沉积厚度为1~2um的SiNx薄膜,该SiNx薄膜即为SiNx振膜层;步骤(3).按照设计的圆形微孔图案,采用光刻刻蚀方法在硅衬底层由下向上刻出直径为400~600um圆柱形的衬底微孔,衬底微孔贯穿硅衬底层;步骤(4).采用HF湿法腐蚀的技术,沿衬底微孔向上在SiO2刻蚀层腐蚀出直径为600~700um圆柱形的背腔,背腔贯穿SiO2刻蚀层,到达SiNx振膜层底面。作为优选,步骤(3)所述的光刻刻蚀方法中的刻蚀工序采用深反应离子刻蚀方法。本专利技术中,低频宽带消音超材料的工作原理是,声波从声源传入硅衬底上的微孔,通过背腔,其中背腔内会存在声学热粘性效应,它会导致声波衰减,损耗发生在腔壁的声-热边界层与粘性边界层中。本专利技术中这种实现低频宽带声音衰减主要归因于背腔形成阻尼腔,阻尼腔中空气阻尼在低于振膜第一自然频率的低频下对振膜产生束缚作用,尤其是对于这种没有附着质量块的微振膜束缚作用更强。在空气阻尼的作用下,声波能量发生剧烈的耗散,导致透过振膜的声波大幅度衰减。本专利技术提供的MEMS结构相比于传统结构,声传输损耗增加了22.3%以上。这样,本专利技术的低频宽带消音超材料就实现了声波衰减的功能。附图说明图1为本专利技术的具有低频宽带消音功能的声学超材料的MEMS结构剖面图;图2为本专利技术的具有低频宽带消音功能的声学超材料的MEMS结构仰视图;图3为本专利技术的具有低频宽带消音功能的声学超材料的声学测试结果图。具体实施方式下面结合附图和具体实施方式对本专利技术作进一步详细的说明。图示及其描述在本质上是示意性的,而非限制性的。因此,与本文所示方法的系统相似的不同实现应被视为属于本专利技术和所附权利要求的保护范围。如图1和2,一种具有低频宽带消音功能的声学超材料,由下到上依次包括厚度为200~300um的硅衬底层1、厚度为1~2um的SiO2刻蚀层2、厚度为1~2um的SiNx振膜层3。硅衬底层1开有直径为400~600um贯穿衬底圆柱形的衬底微孔1-1,SiO2刻蚀层2开有直径为600~700um贯穿SiO2刻蚀层的圆形通孔,形成圆柱形的背腔2-1;背腔2-1和衬底微孔1-1同轴开设,且背腔2-1半径大于衬底微孔1-1半径;SiNx振膜层3覆盖在SiO2刻蚀层2上,SiNx振膜层3与硅衬底层1之间形成阻尼腔。本专利技术低频宽带消音超材料的MEMS结构的工作机理为,声波从声源传入硅衬底上的微孔,通过背腔,其中背腔内会存在声学热粘性效应,它会导致声波衰减,损耗发生在腔壁的声-热边界层与粘性边界层中。本专利技术中这种实现低频宽带声音衰减主要归因于振膜下的背腔形成阻尼腔,阻尼腔中空气阻尼在低于振膜第一自然频率的低频下对振膜产生束缚作用,尤其是对于这种没有附着质量块的微振膜的束缚作用更强。在空气阻尼的作用下,声波能量发生剧烈的耗散,导致透过振膜的声波大幅度衰减,本专利技术提供的MEMS结构相比于传统结构,声传输损耗增加了22.3%以上,实现了更优越的声波衰减功能。制作上述声学超材料的具体工艺步骤如下:步骤(1).采用化学气相沉积技术或热氧化法在厚度为200~300um的硅衬底层1上沉积厚度为1~2um的SiO2薄膜,该SiO2薄膜即为SiO2刻蚀层2;步骤(2).采用化学气相沉积技术在SiO2刻蚀层2上沉积厚度为1~2um的SiNx薄膜,该SiNx薄膜即为SiNx振膜层3;步骤(3).按照设计的圆形微孔图案,采用光刻刻蚀方法在硅衬底层1由下向上刻出直径为400~600um圆柱形的衬底微孔1-1,衬底微孔1-1贯穿硅衬底层1;光刻刻蚀方法中的刻蚀工序采用深反应离子刻蚀方法(DRIE);步骤(4).采用HF湿法腐蚀的技术,沿衬底微孔1-1向上在SiO2刻蚀层2腐蚀出直径为600~700um圆柱形的背腔2-1,背腔2-1贯穿SiO2刻蚀层2,到达SiNx振膜层3底面。该声学超材料的声学测试结果如图3所示。其中横坐标为测试频率,纵坐标为相对声传输损耗(ASTL)。图中ASTL值是以未加工的300um硅片的STL值为基准。我们作为优选例,做了4组对比实验来说明本专利技术结构的声传输衰减特性,实验包括:(1)1um薄膜;(2)1um带背腔薄膜;(3)2um薄膜;(4)2um带背腔薄膜。将4组结构做相同的声学测试。从测试结果分析:将200HZ~1200HZ频率范围可分为3个频段。第一频段为200HZ~680HZ,此频段为振膜“刚度束缚域”,此频段内声波损耗主要由振膜弹性刚度的束缚作用。第二频段为680HZ~740HZ,此频段为振膜“共振域”,此频段内的声波的控制主要由振膜的共振频率作用。第三频段为740HZ~1200HZ,此频段为振膜“质量束缚域”,此频域内的声波衰减主要由振膜的质量密度作用。在第一频段,本专利技术所述结构的ASTL值随频率的增加而增加,且最高值达到9dB,由于振膜弹性强度的作用,第(2)组ASTL值高于第(4)组。在第二频段,(1)、(2)、(3)组的ASTL值由于振膜共振频率的影响,发生急剧下降的现本文档来自技高网...

【技术保护点】
1.一种具有低频宽带消音功能的声学超材料,其特征在于:由下到上依次包括硅衬底层(1)、SiO2刻蚀层(2)、SiNx振膜层(3);硅衬底层(1)开有贯穿衬底圆柱形的衬底微孔(1‑1),SiO2刻蚀层(2)开有贯穿SiO2刻蚀层的圆形通孔,形成圆柱形的背腔(2‑1);背腔(2‑1)和衬底微孔(1‑1)同轴开设,且背腔(2‑1)半径大于衬底微孔(1‑1)半径;SiNx振膜层(3)覆盖在SiO2刻蚀层(2)上,SiNx振膜层(3)与硅衬底层(1)之间形成阻尼腔;所述硅衬底层(1)的厚度为200~300um,衬底微孔(1‑1)的直径为400~600um;所述SiO2刻蚀层(2)为厚度1~2um的SiO2薄膜,背腔(2‑1)的直径为600~700um;所述SiNx振膜层(3)为厚度1~2um的SiNx薄膜。

【技术特征摘要】
1.一种具有低频宽带消音功能的声学超材料,其特征在于:由下到上依次包括硅衬底层(1)、SiO2刻蚀层(2)、SiNx振膜层(3);硅衬底层(1)开有贯穿衬底圆柱形的衬底微孔(1-1),SiO2刻蚀层(2)开有贯穿SiO2刻蚀层的圆形通孔,形成圆柱形的背腔(2-1);背腔(2-1)和衬底微孔(1-1)同轴开设,且背腔(2-1)半径大于衬底微孔(1-1)半径;SiNx振膜层(3)覆盖在SiO2刻蚀层(2)上,SiNx振膜层(3)与硅衬底层(1)之间形成阻尼腔;所述硅衬底层(1)的厚度为200~300um,衬底微孔(1-1)的直径为400~600um;所述SiO2刻蚀层(2)为厚度1~2um的SiO2薄膜,背腔(2-1)的直径为600~700um;所述SiNx振膜层(3)为厚度1~2um的SiNx薄膜。2.制备如权利要求1所述声学超材料的微加工方法,其特征在于该方法的具体步骤...

【专利技术属性】
技术研发人员:吴丽翔孙全胜
申请(专利权)人:杭州电子科技大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1