一种基于评价对象阵营的立场分析模型构建方法技术

技术编号:20389701 阅读:76 留言:0更新日期:2019-02-20 02:47
本发明专利技术公开了一种基于评价对象阵营的立场分析模型构建方法,包括如下步骤:步骤一、构建对象阵营词典;步骤二、构建对象阵营判断语料;步骤三、构建对象阵营判断模型;步骤四、构建立场分析语料;步骤五、构建立场分析模型。与现有技术相比,本发明专利技术的积极效果是:通过本发明专利技术方法构建的立场分析模型对目标对象的分析速度快,远远高于人工判定;其次是准确率高,模型准确率可达到72.54%,且能分析一些少数立场,同时,训练语料构建工作量小,只需要制作一个小规模的语料库,就可以对模型进行训练。综上,本发明专利技术的立场分析模型在分析目标对象立场时,不仅节约了人力成本,降低了工作量,且提高了对目标对象立场分析的效率及准确率。

【技术实现步骤摘要】
一种基于评价对象阵营的立场分析模型构建方法
本专利技术涉及一种基于评价对象阵营的立场分析模型构建方法。
技术介绍
在分析海量评论信息的立场(褒义、贬义、中立等)时,人工判断立场的方法需要耗费大量的人力且效率低。此外,评论信息中涉及的对象很多,评论信息中同样的表达方式,针对不同的对象,立场也不同。因此,当前基于对象进行情感褒贬分析的方法无法直接运用在立场分析。
技术实现思路
为了克服现有技术的上述缺点,本专利技术提供了一种基于评价对象阵营的立场分析模型构建方法,针对网络社交媒体的评论信息,构建对象阵营词典,利用本专利技术的对象阵营判断模型以及立场分析模型的协作,可以达到快速准确分析评论信息立场的目的。本专利技术解决其技术问题所采用的技术方案是:一种基于评价对象阵营的立场分析模型构建方法,包括如下步骤:步骤一、构建对象阵营词典;步骤二、构建对象阵营判断语料;步骤三、构建对象阵营判断模型;步骤四、构建立场分析语料;步骤五、构建立场分析模型。与现有技术相比,本专利技术的积极效果是:通过本专利技术方法构建的立场分析模型对目标对象的分析速度快,远远高于人工判定;其次是准确率高,模型准确率可达到72.本文档来自技高网...

【技术保护点】
1.一种基于评价对象阵营的立场分析模型构建方法,其特征在于:包括如下步骤:步骤一、构建对象阵营词典;步骤二、构建对象阵营判断语料;步骤三、构建对象阵营判断模型;步骤四、构建立场分析语料;步骤五、构建立场分析模型。

【技术特征摘要】
1.一种基于评价对象阵营的立场分析模型构建方法,其特征在于:包括如下步骤:步骤一、构建对象阵营词典;步骤二、构建对象阵营判断语料;步骤三、构建对象阵营判断模型;步骤四、构建立场分析语料;步骤五、构建立场分析模型。2.根据权利要求1所述的一种基于评价对象阵营的立场分析模型构建方法,其特征在于:步骤一所述对象阵营词典内容为一个对象跟随一个类别标签,对象阵营包含两大阵营,分别记为0、1。3.根据权利要求2所述的一种基于评价对象阵营的立场分析模型构建方法,其特征在于:步骤二所述构建对象阵营判断语料的方法为:将对象的评论信息与词典进行匹配,选出明显具有对象阵营特征的评论信息,分别归到0、1阵营中,构成对象阵营判断语料;同时,在不打乱对象阵营判断语料对应关系的基础上进行语料随机乱序,并将语料信息按照8∶1∶1的比例分为训练集、验证集、测试集。4.根据权利要求3所述的一种基于评价对象阵营的立场分析模型构建方法,其特征在于:所述对象阵营判断模型的结构包括:(1)输入层:为长度为N的句子t中的每个词Wt={Wt1,Wt2,...,WtN,}的词向量St={St1,St2,...,StN,}:St=Embedding(Wt)(2)双向神经网络:通过双向的长短记忆神经网络得到每个词的抽象表示Ht={ht1,ht2,...,htN,}:Ht=BSLTM(St)(3)输出层:将每个句子最后一个词的隐层输出htN作为最终的句子表示,经过Linear层转化为2维并通过softmax函数得到一个2维概率分布Pt,分别代表评价对象阵营为0和1:Pt=Softmax(W×htN+bias)其中,W为句子的权重,bias为偏置。5.根据权利要求4所述的一种基于评价对象阵营的立场分析模型构建方法,其特征在于:步骤四所...

【专利技术属性】
技术研发人员:曾曦阳红谢瑞云夏明赟赵姝颖常明芳
申请(专利权)人:中国电子科技集团公司第三十研究所
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1