低温等离子双电场辅助气相反应合成化合物的装置和应用制造方法及图纸

技术编号:20119332 阅读:27 留言:0更新日期:2019-01-16 12:20
本发明专利技术提供了一种低温等离子双电场辅助气相反应合成化合物的装置和应用;本发明专利技术的方法是利用等离子辅助反应器中的两个不同电极性电晕放电电场以形成等离子双电场,利用电能将气体转化为气体分子、原子、离子和/或自由基,再经重整和还原后得到有机化合物如脂肪烃、高碳醚、高碳醇、高碳酯、低碳醇等等;还可以得到无机化合物如N2、O2、H2SO4、NH3等等。本发明专利技术的装置包括设置的具有两个不同电晕放电电场的等离子体区域的反应器,所述电晕放电电场例如是顺次连接的第一电场和第二电场,其中,在第一电场中设置交流电晕放电电场或正电晕放电电场,在第二电场中设置负电晕放电电场,即先在电子作用下发生强氧化,然后再实施强还原和重整,生成目标产品。

Device and Application of Low Temperature Plasma Double Electric Field Assisted Gas Phase Reaction for Compound Synthesis

The invention provides a device and application of low temperature plasma dual electric field assisted gas phase reaction synthesis compound; the method of the invention is to use two different electrode corona discharge electric fields in plasma assisted reactor to form plasma dual electric field, convert gas into gas molecules, atoms, ions and/or free radicals by electric energy, and then obtain organic synthesis after reforming and reduction. Compounds such as aliphatic hydrocarbons, high carbon ethers, high carbon alcohols, high carbon esters, low carbon alcohols, etc. can also be obtained inorganic compounds such as N2, O2, H2SO4, NH3 and so on. The device of the present invention includes a reactor with two plasma regions of different corona discharge electric fields. The corona discharge electric field is, for example, the first electric field and the second electric field connected sequentially. In the first electric field, an alternating current corona discharge electric field or a positive corona discharge electric field are set, and a negative corona discharge electric field is set in the second electric field, i.e., a strong corona discharge electric field is first generated under the action of electrons. After oxidation, strong reduction and reorganization are carried out to produce the target product.

【技术实现步骤摘要】
低温等离子双电场辅助气相反应合成化合物的装置和应用
本专利技术属于等离子辅助化学反应
,具体涉及一种低温等离子双电场辅助气相反应合成有机化合物和无机化合物的装置和应用。
技术介绍
等离子体是气体分子接受热或电场等能量而激发,形成电子、离子、原子、自由基及分子等组成的集合体,其中的正负电荷数基本相等,故称为等离子体。根据等离子体能量状态、温度和离子密度,可分为高温、热和冷等离子体。在冷等离子体中,电子可具有5eV以上的动能,分子、自由基及原子等可处在从室温至数百度范围内。具有足够能量的电子可与气体分子发生非弹性碰撞使其转化为激发态粒子、自由基(或原子)及离子等活性粒子,使反应物活化,常常能使动力学上较难进行的催化反应在较低温度下进行。常见的冷等离子体发生技术包括无声放电、电晕放电、辉光放电、微波放电和射频放电等。其中无声放电和电晕放电能够在常压产生冷等离子体。电晕放电利用非对称电极放电,可在低温下产生高能电子,而无声放电是电极间存在绝缘介质的气体放电,绝缘介质可避免电极间发生火花放电或电弧放电。目前,冷等离子体技术已成为环境治理、能源开发等领域的前沿热点课题,利用等离子体反应净化空气,脱硫脱硝,转化气体等研究已广泛开展,但是从未见报道涉及上述冷等离子体发生技术的组合,尤其涉及等离子体的电场组合装置及应用。
技术实现思路
本专利技术的目的是提供一种更为有效的低温等离子双电场辅助气相反应合成化合物的装置以及利用所述装置实现双电场低温等离子辅助气相反应的应用;本专利技术利用等离子辅助反应器中的两个不同电极性电晕放电以形成等离子双电场,利用电能将气体转化为气体分子、原子、离子和/或自由基,再经重整和还原后得到有机化合物如脂肪烃、高碳醚、高碳醇、高碳酯、低碳醇等等;还可以得到无机化合物如N2、O2、H2SO4、NH3等等。本专利技术的装置包括具有两个不同电晕放电电场的等离子体区域的反应器,所述电晕放电电场例如是顺次连接的第一电场和第二电场,其中,在第一电场中设置交流电晕放电电场或正电晕放电电场,在第二电场中设置负电晕放电电场,即先在电子作用下发生强氧化,然后再实施强还原和重整,生成目标产品。在交流电晕放电电场或正电晕放电电场中可以使用各种气体分子,例如CH4、CO2、CO、O2、H2、H2S、H2O、SO2和NOx(例如包括NO或NO2),在此电场内发生氧化或分解以产生各种活性组分,如O3、H-、H、CH3和CO,而在随后的负电晕放电电场中,氧化或分解产生的气体的分子、原子、离子和/或自由基在密集喷发的大量电子群中趋于夹带电子运动,迅速聚集碰撞,被强制还原和重整为更为稳定的产品,所述产品例如,包括以下有机物的一种或多种,如脂肪烃(如庚烷、16烷、18烷和20烷)、高碳醚(如乙二醇但十二烷基醚)、高碳醇(如十二醇、十四醇)、高碳酯(如十六酸甲酯、十八酸甲酯、邻苯二甲酸二丁酯、邻苯二甲酸二异辛酯、油酸甲酯、亚油酸甲酯等)、低碳醇(如CH3(OH),C2H5(OH)等)和CO(NH2)2,或者无机化合物如N2、O2、H2SO4、NH3等。本专利技术提供一种等离子双电场辅助气相反应的方法,所述方法包括如下步骤:将反应气体通入反应器,所述反应器含有电晕放电双电场,所述双电场包括第一电场和第二电场,所述第一电场是正电晕放电电场,或者交流电晕放电电场,或者其他可提供足够能量将反应气体分子氧化分解为原子、离子、自由基等的电场源,所述第二电场是负电晕放电电场。优选地,所述正电晕放电电场是高压正直流电晕放电电场,还优选为高频高压正直流电晕放电电场。优选地,所述负电晕放电电场是高压负直流电晕放电电场,还优选为高频高压负直流电晕放电电场。本专利技术采用非热力学平衡等离子体技术,气体分子接受电场能量而激发,形成电子、离子、原子、自由基及分子等组成的集合体。在冷等离子体中,电子可具有大约4~6eV动能,具有足够能量的电子可与气体分子发生非弹性碰撞使其转化为激发态粒子、自由基(或原子)及离子等活性粒子,使反应物活化。电晕放电可利用非对称电极在常压放电下产生等离子体,介质阻挡放电可以在常压甚至高于大气压下,在一个绝缘介质的夹缝中放电产生重复的电子与介质碰撞,增加电流密度,强化电场强度,从而引起快速有效的化学反应。由此方式产生的等离子体内部电子速度很快,热力学温度很高(例如,11000K)而气体温度则接近室温,从而形成非平衡热力学系统,导致反应体系不受热力学平衡组成定律的限制,最大限度地将所有的反应物转化成为产品。一方面,电极喷发的电子具有足够高的能量使反应物分子激发、解离和重整,促使反应分子和离子在短时间内充分反应,转化成产物;另一方面,反应的气体又得以保持低温,或接近室温,可以让低温气体分子有效地获得化学分解或合成所需要的热力学能量迅速反应,从而减少不必要的高温高压加工的能耗。应该指出,这样的双电场激励反应系统即可以放弃或减少使用催化剂,又使得尽量避免应用高温高压过程设备成为可能。在传统催化工艺当中,人们经常不得不通过高温高压来加热某种复杂的金属催化剂颗粒以便激活金属催化剂材料表面的电子,从而构造大比表面积的激发态微电场来引导和压缩聚集颗粒表面周围的气体分子以便快速分解和重整。然而,本专利技术的双电场等离子辅助激励反应技术有可能人为地让所有气体氧化及还原反应在没有催化剂的情况下获得电能量,并在极性强力电磁场空间内达到正或负电磁化而迅速聚集,快速地实施分解和重整。这个方法也同时为反应气体能够在不受任何热力学平衡组成限制的条件下高效地氧化和还原,或分解和重整而达到稳定产品的终点,提供了一个热力学最为优化的选择和工艺机会。本专利技术的交流电晕放电电场或正电晕放电电场和负电晕放电电场没有特别限定,任何现有技术已知的等离子源均可用于本专利技术。根据本专利技术,在所述交流电晕放电电场或正电晕放电电场主要功能是氧化和重整反应,以将气体分子分解成离子和其它自由基,这实际上构造了一个强化的气体氧化电场,任何气体分子和带电粒子都会受到正离子场或交变电场的影响而被强制地进行氧化反应。随后在所述负电晕放电电场将负离子和分子还原和转化成新分子,即实际上构造了一个强化的还原电场,使得分子和带电粒子在密集的自由电子群中,获得电子被强制地还原和重整,不同的气体分子和带电粒子可以快速进行还原反应。事实上,这种电晕放电双电场可以重整或包裹高能电子到分解的分子或离子外轨道上,以产生具有不同键能的新粒子,使它们可以成为电能量的存储介质。这种电晕放电双电场等离子辅助反应过程技术可以使人为地应用正或负电场的极性来有效地实施强氧化或强还原的化学过程成为可能。应该指出,当第一个电场是交流电晕放电电场,气体在交流电晕放电电场的正电性的上半波段可发生的分解或氧化,在负的下半波段将进行还原重整。然而,这样的电场的极性是在高频率地交替快速变化的。由于交替频率太高(如20kHz),而有些产品分子重组的时间往往要比反应分子分解时间长,氧化分解的粒子不一定有时间对负极性电场的改变进行响应而还原,即使有部分粒子在负极性的下半波段还原重整成化合物也会立即再次在紧接着的正极性波段分解,从而无法达到稳定的产品,故无法通过单独设置交流电晕放电电场来实现稳定产品的制备。而且,大量的实验证据也的确显示,交变电晕放电电场的总的效果常常与正电晕本文档来自技高网...

【技术保护点】
1.一种低温等离子双电场辅助气相反应合成化合物的装置,其特征在于,所述装置具有电晕放电双电场,其中,第一电场是交流电晕放电电场或正电晕放电电场,或者其他可提供足够能量将各种气体分子氧化分解为原子、离子、自由基等的电场源,第二电场是负电晕放电电场。

【技术特征摘要】
2017.07.03 CN 2017105346438;2017.09.07 CN 201710801.一种低温等离子双电场辅助气相反应合成化合物的装置,其特征在于,所述装置具有电晕放电双电场,其中,第一电场是交流电晕放电电场或正电晕放电电场,或者其他可提供足够能量将各种气体分子氧化分解为原子、离子、自由基等的电场源,第二电场是负电晕放电电场。2.根据权利要求1所述的装置,其特征在于,所述第一电场是正电晕放电电场,优选所述正电晕放电电场是正直流电晕放电电场,还优选为高压正直流电晕放电电场或是高频高压正直流电晕放电电场;所述负电晕放电电场是负直流电晕放电电场,还优选为高压负直流电晕放电电场或是高频高压负直流电晕放电电场。更优选地,所述第一电场可以位于所述装置的上部,也可以位于所述装置的下部;或者,所述第二电场位于所述装置的下部,或者位于所述装置的上部。3.根据权利要求1-2任一项所述的装置,其特征在于,气体通过电晕放电双电场的先后顺序设置为:先进入交流电晕放电电场或正电晕放电电场后再进入负电晕放电电场,即交流-负电晕双电场或者正-负电晕双电场;或者气体通过电晕放电双电场的先后顺序设置为:先进入负电晕放电电场后再进入交流电晕放电电场或正电晕放电电场,即负-交流电晕双电场或者负-正电晕双电场。4.根据权利要求1-3任一项所述的装置,其特征在于,所述装置具有外壳,在装置内设置反应室,其中,至少一个反应室内具有交流电晕放电电场或正电晕放电电场,所述至少另一个反应室具有负电晕放电电场,在所述电晕放电电场中心设置电极或者金属棒,交流电晕放电电场源或正电晕放电电场源,和负电晕放电电场源供电给电极或者金属棒;电极或者金属棒提供可吸附到气体的高能电子。优选地,所述反应室为金属圆筒式反应室或金属管式反应室;在金属圆筒式反应室或金属管式反应室中心设置中心电极或者中心金属棒,在金属圆筒式反应室或金属管式反应室外壁上设置相对电极或者相对金属棒,此时电晕放电双电场内产生强电场;所述强电场中的正电场可用于氧化和分解气体分...

【专利技术属性】
技术研发人员:夏亚沈陈锋马晓迅
申请(专利权)人:海加控股有限公司
类型:发明
国别省市:中国香港,81

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1