使用高斯惩罚检测图像中行人的方法技术

技术编号:19934829 阅读:36 留言:0更新日期:2018-12-29 04:46
本发明专利技术公布了一种使用高斯惩罚检测图像中行人的方法,在行人检测过程中,使用高斯惩罚对获得的初步行人边界框进行筛选,从而提升对图像中行人尤其是遮挡行人的检测性能;包括:获取行人检测图像的训练数据集、测试数据集和行人标注;使用行人检测方法用训练数据集训练得到检测模型,获取初步的行人边界框及其置信度和坐标;对行人边界框的置信度进行高斯惩罚,得到惩罚后的行人边界框置信度;通过行人边界框筛选得到最终的行人边界框,从而达到去除单个行人的重复边界框,而保留被遮挡行人的边界框的目的,由此实现对图像中行人的检测。本发明专利技术能够显著降低行人检测的漏检率,提高遮挡行人的检出率。

【技术实现步骤摘要】
使用高斯惩罚检测图像中行人的方法
本专利技术属于信息
,涉及计算机视觉,模式识别等技术,具体涉及使用高斯惩罚的方式进行行人边界框的筛选,从而检测图像中行人的方法。
技术介绍
行人检测即判断输入的图像或视频中是否出现行人,并确定其位置。近年来,随着计算机视觉领域飞速发展,计算机视觉技术在智能驾驶,智能视频监控和机器人领域得到大量地应用。行人检测作为保障汽车、行人安全的一种主动安全手段,具有提高驾驶安全性、保障行人生命财产安全的重要意义和实用价值。因此行人检测技术在计算机视觉领域占据着不可比拟的重要地位。由于行人间的相互遮挡或者行人与其他物体之间的遮挡,造成被遮挡行人在图片或者视频中只有局部的信息,因此行人检测目前所面临的一个主要的挑战是遮挡行人。目前主流的方法首先在图像中检测到足够多的边界框,并对每个边界框生成一个置信度。之后对初步生成的边界框进一步的筛选,获得最后的检测结果。普遍的筛选方法是依据置信度的高低和重叠度大小按照非极大值抑制的策略将重复边界框直接删除。但是这种筛选方法忽略了对遮挡行人的处理。在人群密集的区域,由于行人间的相互遮挡,对多个边界框的直接删除也去除了被遮挡行本文档来自技高网...

【技术保护点】
1.一种使用高斯惩罚检测图像中行人的方法,在行人检测过程中,使用高斯惩罚对获得的初步行人边界框进行筛选,从而提升对图像中行人尤其是遮挡行人的检测性能;包括如下步骤:1)获取行人检测图像的训练数据集、测试数据集和行人标注;2)使用行人检测方法用训练数据集训练得到检测模型,获取初步的行人边界框的坐标及其置信度(score);3)对行人边界框的置信度进行高斯惩罚,得到惩罚后的行人边界框置信度;通过行人边界框筛选得到最终的行人边界框,从而达到去除单个行人的重复边界框,而保留被遮挡行人的边界框的目的,由此实现对图像中行人的检测;包括如下步骤:31)对于每一幅图像,根据置信度对边界框进行排序,选择置信度最...

【技术特征摘要】
1.一种使用高斯惩罚检测图像中行人的方法,在行人检测过程中,使用高斯惩罚对获得的初步行人边界框进行筛选,从而提升对图像中行人尤其是遮挡行人的检测性能;包括如下步骤:1)获取行人检测图像的训练数据集、测试数据集和行人标注;2)使用行人检测方法用训练数据集训练得到检测模型,获取初步的行人边界框的坐标及其置信度(score);3)对行人边界框的置信度进行高斯惩罚,得到惩罚后的行人边界框置信度;通过行人边界框筛选得到最终的行人边界框,从而达到去除单个行人的重复边界框,而保留被遮挡行人的边界框的目的,由此实现对图像中行人的检测;包括如下步骤:31)对于每一幅图像,根据置信度对边界框进行排序,选择置信度最大的边界框M;32)通过式1计算其他每一个边界框bboxi与边界框M的重叠度IoU(M,bboxi):其中,area(M∩bboxi)是边界框bboxi与M的区域交集,area(M∪bboxi)是边界框bboxi与M的区域并集;通过式3对边界框的置信度进行惩罚,得到惩罚后的行人边界框置信度:其中,e为自然对数,σ是方差;scorei为初始边界框的置信度;Si为边界框bboxi惩罚后的置信度;IoU(M,bboxi)是边界框bboxi与M的重叠度;33)设置置信度阈值,对每张图像,将惩罚后的置信度大于所设置的置信度阈值的行人边界框,作为最终检测结果;由此...

【专利技术属性】
技术研发人员:王文敏董培磊范梦迪王荣刚李革董胜富王振宇李英赵辉高文
申请(专利权)人:北京大学深圳研究生院
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1