当前位置: 首页 > 专利查询>吉林大学专利>正文

一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用技术

技术编号:19901328 阅读:81 留言:0更新日期:2018-12-26 02:18
一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用,属于薄膜材料技术领域。是将ITO玻璃作为阴极,铂电极作为阳极,0.05~0.20M硝酸钙、0.015~0.60M磷酸氢二铵、0.015~0.60M磷酸的混合溶液作为电解质,电解质溶液的钙磷比为5:3,通过电沉积羟基磷灰石得到微纳尺度条带状结构的羟基磷灰石薄膜电极,薄膜厚度为5~35μm。沉积电位是通过直流稳压电源调控的,沉积电位为1.5~2.5V,沉积时间为30~180min,沉积时沉积池置于水浴锅中加热,温度控制在40~80℃。本发明专利技术制备的羟基磷灰石薄膜电极可作为重金属离子传感器在重金属检测中得到应用,重金属离子为二价的铅、铜或汞,浓度为0.1~10.0μM。

【技术实现步骤摘要】
一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用
本专利技术属于薄膜材料
,具体涉及一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用。
技术介绍
因为重金属对人类健康和生态系统具有高毒性,所以重金属的污染引起了人们的高度重视。在各种重金属中,三种毒性比较强的二价重金属离子是铅、铜和汞。据报道,二价铅离子的积累会在人体内引起各种有害作用,如肾损伤、贫血、记忆丧失,甚至癌症。此外,尽管二价铜离子对人体是必不可少的,但其过量会导致健康问题,如肺癌和肝脏损伤。低浓度的二价汞离子也可损害中枢神经系统、脑、肾和肺。目前,重金属离子的检测通常为原子吸收光谱法、原子荧光光谱法、电感耦合等离子体质谱法等一些需要昂贵的仪器、耗费大量时间、不方便安置的方法。由于电化学技术具有成本低、灵敏度高、便携性好等优点,被认为是一种有效的检测方法。最近,各种材料修饰的电极已广泛用于重金属离子检测。电沉积法制备的羟基磷灰石修饰的电极可以提供均匀的表面形貌、大的面积与体积比和高电导率,对于提高重金属离子的检测性能非常重要。
技术实现思路
本专利技术是针对现有技术存在的问题,提供一种具有良好的稳定性、高灵敏度和低成本的用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用。用该电极对不同浓度的二价重金属离子铅、铜和汞进行检测,通过响应电流强度的变化可以监测到各重金属离子浓度的变化。为了实现上述目的,本专利技术所述的一种用于重金属离子检测的羟基磷灰石薄膜电极的制备方法,其特征在于:在沉积池中,以ITO玻璃为阴极,铂电极为阳极,硝酸钙、磷酸氢二铵、磷酸的混合水溶液为电解质,通过电沉积在ITO阴极上沉积得到羟基磷灰石薄膜电极;电解质溶液的钙磷比为5:3,所得羟基磷灰石薄膜电极的厚度为5~35μm;电沉积的电位是通过直流稳压电源调控的,沉积时沉积池置于水浴锅中加热。上述方法中,硝酸钙浓度为0.05M~0.2M。上述方法中,磷酸氢二铵浓度为0.015M~0.06M。上述方法中,磷酸浓度为0.015M~0.06M。上述方法中,羟基磷灰石薄膜为微纳尺度条带状结构,带宽为0.85~3μm,带长为1~30μm,带厚为50~200nm。上述方法中,电沉积电位为1.5~2.5V。上述方法中,电沉积时间为30~180min。上述方法中,水浴温度为40~80℃。本专利技术制备的羟基磷灰石薄膜电极可作为重金属离子传感器在重金属检测中得到应用。所述的应用,其是将羟基磷灰石薄膜电极作为工作电极,铂电极作为对电极,饱和甘汞电极作为参比电极,应用电化学工作站在差分脉冲伏安测试方法下,监测电流响应强度随着重金属离子浓度发生变化,从而实现对重金属离子浓度的检测。上述应用,差分脉冲伏的电位为-0.80~0.50V。上述应用,重金属离子为二价的铅、铜或汞。上述应用,重金属离子的浓度为0.1~10.0μM。本专利技术制备的羟基磷灰石薄膜电极作为重金属离子传感器对重金属离子响应的原理:电极表面的带有负电荷的离子先将重金属离子吸附到电极表面,再使电位从负向正扫描,使其自电极溶出,并记录溶出过程的电流—电位曲线。在一定条件下其峰高与金属离子浓度呈线性关系,而且不同离子在一定的电解液中具有不同的峰电位。本专利技术的有益效果是:本专利技术基于电沉积法制备的羟基磷灰石薄膜电极可以提供均匀的表面形貌,大的面积与体积比和高电导率,具有良好的稳定性,高灵敏度和低成本。其制备方法工艺简单、易于操作,制备成本低,易于推广。附图说明为了更清楚地说明本专利技术中的技术方案及其制备出来材料的性能,下面给出实施例1的相关图示。图1为羟基磷灰石薄膜电极的X射线电子衍射图谱图2为羟基磷灰石薄膜电极的扫描电子显微镜图谱。图3为羟基磷灰石薄膜电极在二价铅离子0.1~1.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。图4为羟基磷灰石薄膜电极在二价铅离子3.0~10.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。图5为羟基磷灰石薄膜电极在二价铜离子0.1~1.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。图6为羟基磷灰石薄膜电极在二价铜离子1.0~10.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。图7为羟基磷灰石薄膜电极在二价汞离子0.1~1.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。图8为羟基磷灰石薄膜电极在二价汞离子1.0~10.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。由图1的X射线电子衍射图谱可以看出,目标电极羟基磷灰石的衍射峰位与PDF卡09-0432的标准图谱的特征峰相对应。由图2的扫描电子显微镜图谱可以看出,目标电极为微纳尺度条带状的羟基磷灰石膜电极。由图3的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在0.1~1.0μM浓度范围内对二价铅离子有很高的灵敏度和响应电流强度,并且二价铅离子的浓度与电流响应强度有很好的线性关系。由图4的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在3.0~10.0μM浓度范围内对二价铅离子有很高的灵敏度和响应电流强度,并且二价铅离子的浓度与电流响应强度有很好的线性关系。由图5的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在0.1~1.0μM浓度范围内对二价铜离子有很高的灵敏度和响应电流强度,并且二价铜离子的浓度与电流响应强度有很好的线性关系。由图6的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在1.0~10.0μM浓度范围内对二价铜离子有很高的灵敏度和响应电流强度,并且二价铜离子的浓度与电流响应强度有很好的线性关系。由图7的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在0.1~1.0μM浓度范围内对二价汞离子有很高的灵敏度和响应电流强度,并且二价汞离子的浓度与电流响应强度有很好的线性关系。由图8的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在1.0~10.0μM浓度范围内对二价汞离子有很高的灵敏度和响应电流强度,并且二价汞离子的浓度与电流响应强度有很好的线性关系。具体实施方式下面结合实施例对本专利技术作进一步说明,但本专利技术并不局限于这些实施例。实施例1:将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。实施例2:将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.10M、磷酸氢二铵0.030M、磷酸0.030M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为9μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。实施例3:将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.15M、磷酸氢二铵0.045M、磷酸0.045本文档来自技高网...

【技术保护点】
1.一种用于重金属离子检测的羟基磷灰石薄膜电极的制备方法,其特征在于:在沉积池中,以ITO玻璃为阴极,铂电极为阳极,硝酸钙、磷酸氢二铵、磷酸的混合水溶液为电解质,通过电沉积在ITO阴极上沉积得到羟基磷灰石薄膜电极;电解质溶液的钙磷比为5:3,所得羟基磷灰石薄膜电极的厚度为5~35μm;电沉积的电位是通过直流稳压电源调控的,沉积时沉积池置于水浴锅中加热。

【技术特征摘要】
1.一种用于重金属离子检测的羟基磷灰石薄膜电极的制备方法,其特征在于:在沉积池中,以ITO玻璃为阴极,铂电极为阳极,硝酸钙、磷酸氢二铵、磷酸的混合水溶液为电解质,通过电沉积在ITO阴极上沉积得到羟基磷灰石薄膜电极;电解质溶液的钙磷比为5:3,所得羟基磷灰石薄膜电极的厚度为5~35μm;电沉积的电位是通过直流稳压电源调控的,沉积时沉积池置于水浴锅中加热。2.如权利要求1所述的一种用于重金属离子检测的羟基磷灰石薄膜电极的制备方法,其特征在于:硝酸钙浓度为0.05M~0.2M,磷酸氢二铵浓度为0.015M~0.06M,磷酸浓度为0.015M~0.06M。3.如权利要求1所述的一种用于重金属离子检测的羟基磷灰石薄膜电极的制备方法,其特征...

【专利技术属性】
技术研发人员:李子亨孙明旭
申请(专利权)人:吉林大学
类型:发明
国别省市:吉林,22

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1