当前位置: 首页 > 专利查询>天津大学专利>正文

一种结合时空特征和误差处理的风能预测方法技术

技术编号:19344228 阅读:47 留言:0更新日期:2018-11-07 14:39
本发明专利技术公开了一种结合时空特征和误差处理的风能预测方法,所述方法包括以下步骤:从风能时间序列中提取时间特征,通过多输入‑单输出的模式提取距离较近风电机之间的信息,引入空间特征;通过基于k近邻的噪声数据检测方法对时间特征和空间特征进行预处理;对预处理后的特征进行时空特征的方差属性分析,基于分析的结果训练多组预测器模型;采用加权平均数方式对多个预测模型进行组合,生成基于时空特征方差的集成学习模型,用于对组合后的预测模型进行误差预测;使用集成学习模型得到预测值y,将和时空特征相应的误差特征输入到辅助模型中,得到结果y′,则最终的预测值为y+y′;集成学习模型和辅助模型相结合生成最终的模型。

A wind energy prediction method combined with spatiotemporal characteristics and error handling

The invention discloses a wind energy prediction method combining space-time characteristics and error processing. The method comprises the following steps: extracting time characteristics from wind energy time series, extracting information between wind turbines closer to each other through multi-input and single-output modes, introducing spatial characteristics, and detecting noise data based on K-nearest neighbor. The measurement method preprocesses the temporal and spatial features; carries on the variance attribute analysis of the spatial and temporal features of the preprocessed features, and trains multiple groups of predictor models based on the results of the analysis; combines multiple prediction models by weighted average method, and generates an integrated learning model based on the variance of the spatial and temporal features, which can be used in the future. The combined prediction model is used for error prediction; the prediction value y is obtained by using the ensemble learning model, and the error characteristics corresponding to temporal and spatial features are input into the auxiliary model. The final prediction value y', then y+y', is obtained; the final model is generated by combining the ensemble learning model with the auxiliary model.

【技术实现步骤摘要】
一种结合时空特征和误差处理的风能预测方法
本专利技术涉及数据挖掘、特征工程和风能预测领域,尤其涉及一种结合时空特征和误差处理的风能预测方法。
技术介绍
目前用于风能预测的机器学习算法主要有人工神经网络、决策树、支持向量机回归等。由于风能预测问题本身就是一个“依据特征预测数值”的问题,与一般的机器学习方法具有很好的可结合性,使得大多数常用的机器学习方法包括:随机森林、神经网络、以及各类回归算法等能够很容易的迁移应用到这一领域。目前无法证明一个模型比另一个模型更好:首先,尚不存在一个公认的评价标准来评判各个模型,其次,若要对比两个模型的效果,需要在相同的数据集下进行对比,这是不符合现实需求的,风能预测器的表现与其具体应用的区域有很强的相关性,不同模型在不同的数据集下表现不同,一些场景下神经网络是表现最好的模型,而在另外的场景中,支持向量机回归是最好的模型。因此这些模型目前处于并存的状态。除了针对模型的研究,也有研究人员对用于预测的特征进行了考察,研究人员将时空信息引入到风能特征提取中,使得风电功率预测的准确率有了很大提高。所谓时空特征,就是既包含一个发电机发电功率的历史信息,又包含其附近本文档来自技高网...

【技术保护点】
1.一种结合时空特征和误差处理的风能预测方法,其特征在于,所述方法包括以下步骤:从风能时间序列中提取时间特征,通过多输入‑单输出的模式提取距离较近风电机之间的信息,引入空间特征;通过基于k近邻的噪声数据检测方法对时间特征和空间特征进行预处理;对预处理后的特征进行时空特征的方差属性分析,基于分析的结果训练多组预测器模型;采用加权平均数方式对多个预测模型进行组合,生成基于时空特征方差的集成学习模型,用于对组合后的预测模型进行误差预测;使用集成学习模型得到预测值y,将和时空特征相应的误差特征输入到辅助模型中,得到结果y′,则最终的预测值为y+y′;集成学习模型和辅助模型相结合生成最终的模型。

【技术特征摘要】
1.一种结合时空特征和误差处理的风能预测方法,其特征在于,所述方法包括以下步骤:从风能时间序列中提取时间特征,通过多输入-单输出的模式提取距离较近风电机之间的信息,引入空间特征;通过基于k近邻的噪声数据检测方法对时间特征和空间特征进行预处理;对预处理后的特征进行时空特征的方差属性分析,基于分析的结果训练多组预测器模型;采用加权平均数方式对多个预测模型进行组合,生成基于时空特征方差的集成学习模型,用于对组合后的预测模型进行误差预测;使用集成学习模型得到预测值y,将和时空特征相应的误差特征输入到辅助模型中,得到结果y′,则最终的预测值为y+y′;集成学习模型和辅助模型相结合生成最终的模型。2.根据权利要求1所述的一种结合时空特征和误差处理的风能预测方法,其特征在于,所述通过基于k近邻的噪声数据检测方法对时间特征和空间特征进行预处理具体为:对每个时空特征Xi,计算与其他特征Xj的相似度,选择h个相似度最大的作为近邻,然后依据时空特征X的输出和近邻的输出,判断时空特征X是否是噪音,并剔除掉噪声构成特征集。3.根据权利要求1所述的一种结合时空特征和误差处理的风能预测方法,其特征在于,所述基于分析的结果训练多组预测器模型具体为:训练集为时空特征Xi的方差为v(Xi),若满足|v(Xj)-v(Xi)|<δ,δ∈实数R,则时空特征Xj的方差、与时...

【专利技术属性】
技术研发人员:于瑞国喻梅于健赵满坤刘志强安永利
申请(专利权)人:天津大学
类型:发明
国别省市:天津,12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1