当前位置: 首页 > 专利查询>中南大学专利>正文

一种难熔金属偏聚韧化高硬合金及其铸造与热处理方法技术

技术编号:19191538 阅读:80 留言:0更新日期:2018-10-17 03:51
一种难熔金属偏聚韧化高硬合金及其铸造与热处理方法,合金各元素的质量含量为Cr:9.0~13.0,B:2.6~2.9,C:0.7~0.9,W:1.2~2.5,Nb:0.4~0.8,V:0.4~0.8,Mn的含量小于0.3,Si的含量小于0.07,余量为Fe;其中C和B:3.3~3.6;C/Cr含量比:0.06~0.08;Nb和V:0.5~1.0。熔化温度1540~1680℃,在1260~1320℃浇铸合金。950~1050℃淬火,200~250℃回火。本发明专利技术铸锭硬度66.2~67.5HRC,冲击韧性155~17.9J/cm2,抗弯强度1460~1615MPa。

【技术实现步骤摘要】
一种难熔金属偏聚韧化高硬合金及其铸造与热处理方法
本专利技术属于高硬度耐磨铸铁领域,涉及一种难熔金属钨元素韧化硬质相和过饱和固溶体、马氏体基体相的耐磨耐蚀铸铁的合金及其铸造、热处理方法,可广泛用于电力、冶金、机械、化工等行业中机械耐磨件制造。技术背景Fe-Cr-B-C耐磨铸造合金是以Fe2B或M2B硬质相为硬质相,具有良好的韧性和高硬度、高耐蚀性,熔炼-铸造工艺性好,具有十分广阔的应用前景。Fe-B合金中的硬质相M2B(M代表溶入硼化物中的Fe、Cr、V、Nb等合金元素)呈连续网状分布,完全破坏了基体的连续性,导致合金的韧性较低,很难应用到受冲击力较大的恶劣工作条件中,故使其应用范围受到限制。采用高温热处理、稀土变质,合金化等手段,改善硼化物的连续网状分布形态对Fe-B合金进行强韧化处理,扩大其使用范围,充分发挥其耐磨潜力是一项十分重要的课题,但目前所做的研究还没有取得实质性突破。将Fe-B合金基体相的强度进一步提高,并保留一定量Fe2B或M2B硬质相,则可实现高硬度、高韧性。非晶/纳米晶、过饱和固溶体、马氏体等都具有很高的强度和硬度,韧性良好,并且耐蚀性好,由此,可通过基体相的非晶/纳米晶化,形成新的高硬度、高耐蚀性合金。专利文献1:授权公告号CN105695884B,制备的耐磨合金硬度为HRC66~70,冲击韧性4~9J/cm2。在制备大尺寸规格(厚度大于30mm)和形状复杂铸件时,会出现热应力裂纹,并且有硬度分布不均匀的现象。在大型雷蒙磨床、矿石破碎机、渣浆泵等设备中使用的磨球、衬板、锤头、齿板、过流件、叶轮等耐磨件,体积庞大,形状复杂,因此专利文献1所采用的工艺方法限制了该合金的应用。该类合金的硬度较高,但冲击韧性不足,强度指标较低,抗弯强度较低,在346~477MPa范围,因此限制了该合金应用于一些外部载荷大、需要耐冲击力作用的场合。Ti(C,N)基金属陶瓷起源于上世纪七十年代。1971年,Kieffer发现在TiC基金属陶瓷中引入N时,只要在粘结相中加入适当的Mo或Mo2C就可获得比TiC基金属陶瓷更好的性能。随着对其合金化作用认识的加深,烧结技术和设备的不断改进,此类材料不但具有较高的硬度、耐磨性、红硬性、优良的化学稳定性、与金属间极低的摩擦系数,而且还有一定的韧性和强度。Ti(C,N)基金属陶瓷的主要成分是TiC、TiN或Ti(C,N),以W或Ni为粘结剂,以其它碳化物为添加剂,如WC,Mo2C,(Ta,Nb)C,Cr3C2,VC,AlN等。它们形成了(Ti,W,Mo,Cr,V)(C,N)固溶体,通过固溶强化机制而强化硬质相。其微观结构特征一般是:TiC或Ti(C,N)硬质相为核心,边缘为(Ti,Mo)C或(Ti,Mo)(C,N)固溶体组成的环形结构(SS相)及Ni、W和溶入其中的Ti、Mo、C、N等组成的粘结相(r相)三部分组成。如添加WC、TaC也同样可生成SS相。这是由于Mo2C、TiC、WC、TaC向液相中溶解,并在TiC或Ti(C,N)粗颗粒上析出的结果。在硬质相周围生成SS相,改善了Ni对Ti(C,N)的润湿性,抑制了Ti(C,N)晶粒长大,有利于碳化物晶粒细化。文献2:共晶Fe-Cr-B-C合金的快冷组织与性能,铸造,2017,66(10):1053~1056。铸态Fe-Cr-B-C合金的快冷组织由马氏体+残余奥氏体基体和沿晶界连续网状分布的(Fe,Cr)2(B,C)+(Fe,Cr)23(B,C)6硬质相组成。快冷组织基体相的显微硬度为800~880HV,硬质相显微硬度为1150~1400HV,宏观硬度为HRC68,冲击韧性达到13.6J/cm2;而经960℃×2h退火后,基体组织转变为铁素体和粒状渗碳体,硬质相(Fe,Cr)2(B,C)和(Fe,Cr)23(B,C)6少量溶解,局部区域出现断网,出现新相(Fe,Cr)3(B,C),退火后基体相显微硬度为330~400HV,硬质相为850~1250HV,宏观硬度降低为HRC46,冲击韧性减少到3.4J/cm2。文献2所得结果反映出基体相的硬度对该类材料的硬度和冲击韧性起重大作用;对比专利文献1,该类合金在冲击韧性等性能方面还有提升的可能。
技术实现思路
本专利技术的目的是提供一种难熔金属偏聚韧化高硬合金及其铸造与热处理方法,该合金以Fe2B或M2B为硬质相,添加W元素,在硬质相中偏聚形成SS相,抑制了硬质相晶粒长大,并阻碍硬质相形成连续网状结构;通过热处理,形成多元素过饱和固溶体、马氏体等非平衡相为基体组织。使得合金在保持高硬度的同时,韧性和强度得以大幅度提高,从而具有更广阔的应用前景。本专利技术选用的高耐磨性、高耐蚀性Fe-Cr-B-C合金为基础合金,再添加1.2~2.5wt.%W元素。形成含Fe、Cr、B、C、Nb、V、W等元素的多元共晶合金,各元素的质量百分含量为Cr:9.0~13.0,B:2.6~2.9,C:0.7~0.9,W:1.2~2.5,Nb:0.4~0.8,V:0.4~0.8,Mn的含量小于0.3,Si的含量小于0.07,S、P:≤0.01,余量为Fe。其中C、B总和:3.3~3.6;C/Cr含量比:0.06~0.08;Nb、V的总和为0.5~1.0。W是强碳化物形成元素,即W与C的亲和力较大。与Ti(C,N)基金属陶瓷中SS相形成机制相似,W元素会在以Fe2B为主的硬质相中间或附近偏聚,形成化学式类似于(W,Fe)x(B,C),x=2~3的过渡组织,从而细化硬质相,阻止硬质相形成连续网状结构,或部分隔断硬质相与基体相的直接连接,从而提高合金的韧性和强度。由于W元素比重较大,在熔炼时容易产生宏观偏析,在引入W元素强韧化合金时,W的含量不宜过高,本专利技术W含量应控制在1.2~2.5wt.%范围内。参照专利文献1,在具体制备合金时,可采用铬铁(高碳、中碳、微碳)、硼铁、铌铁、钒铁、钨铁和纯铁等按照成分要求配料。表1中列举了原材料及其成份。表1可应用于制备专利技术合金的原料及成份表1的原料成分并非唯一的,具体成分由实际可获得的原材料来确定。其中铬铁、金属铬、硼铁、钨铁、铌铁和钒铁提供专利技术合金的Cr、B、W、Nb和V的含量,高碳铬铁用来平衡C含量。纯铁可以是电工纯铁、电磁纯铁或工业纯铁。具体的熔炼、铸造与热处理工艺为:按照成分要求配比称量好相应原材料后,可采用感应炉、真空感应炉等来熔炼制备合金。首先将铬铁、金属铬、硼铁、铌铁、钒铁、钨铁和纯铁熔化,熔化温度高于1540~1680℃,使得纯铁、钨铁和金属铬充分熔化;然后降低电炉功率,将熔体温度降至1320~1380℃后,用配料总量0.1~0.15%的纯铝脱氧;继续保温约5~10分钟,迅速浇铸合金,浇铸温度范围为1260~1320℃。为了避免发生热应力开裂,铸造完后开模温度要低于200℃。自然冷却。由于合金主要成分Fe-Cr-Co-B-C为深度共晶,熔体的流动性很很好,因此可通过各种方法铸造成型,如通过普通砂型模铸造、熔模铸造或消失模铸造。铸锭冷却到环境温度后,将铸件放入到箱式炉重新加热,加热温度为950~1050℃,保温时间为1~4h。加热升温速度不超过10℃/min。保温结束后,快速将铸件入5~15%的盐水或碱水淬火冷却。冷却过程中应不断搅拌,淬火冷却时间≥30min。本文档来自技高网
...

【技术保护点】
1.一种难熔金属偏聚韧化高硬合金,其特征在于:合金各元素的质量百分含量为Cr:9.0~13.0,B:2.6~2.9,C:0.7~0.9,W:1.2~2.5,Nb:0.4~0.8,V:0.4~0.8,Mn的含量小于0.3,Si的含量小于0.07,S、P:≤0.01,余量为Fe;其中C和B总质量百分含量为:3.3~3.6;C/Cr含量比:0.06~0.08;Nb和V的总质量百分含量为0.5~1.0。

【技术特征摘要】
1.一种难熔金属偏聚韧化高硬合金,其特征在于:合金各元素的质量百分含量为Cr:9.0~13.0,B:2.6~2.9,C:0.7~0.9,W:1.2~2.5,Nb:0.4~0.8,V:0.4~0.8,Mn的含量小于0.3,Si的含量小于0.07,S、P:≤0.01,余量为Fe;其中C和B总质量百分含量为:3.3~3.6;C/Cr含量比:0.06~0.08;Nb和V的总质量百分含量为0.5~1.0。2.如权利要求1所述的难熔金属偏聚韧化高硬合金的铸造与热处理方法,其特征在于包括以下步骤:按照成分要求配比称量好相应原材料后,采用感应炉熔炼制备合金,首先将铬铁、金属铬、硼铁、铌铁、钒铁、钨铁和纯铁熔化,熔化温度1540~1680℃,使得纯铁、钼铁和金属铬...

【专利技术属性】
技术研发人员:罗丰华罗弘瑞闵小兵卢静熊落保严淑群
申请(专利权)人:中南大学
类型:发明
国别省市:湖南,43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1