一种具有能量采集功能的声学传感器及其制作方法技术

技术编号:19152792 阅读:23 留言:0更新日期:2018-10-13 10:51
本发明专利技术涉及一种具有能量采集功能的声学传感器及其制作方法。现有传统的电容式声学传感器对外界低频信号几乎不响应,导致声学信号的部分能量被忽略。本发明专利技术由下向上依次包括硅衬底、SiO2刻蚀停止层、多晶硅线圈、SiO2振膜支撑层、多晶硅振膜层、SiO2背电极支撑层、SiNx绝缘层、多晶硅背板层、Al2O3钝化层。方形螺旋线条状的多晶硅线圈位于SiO2刻蚀停止层与SiO2振膜支撑层之间,嵌在SiO2振膜支撑层内。多晶硅振膜层架设在背腔上,将背腔和振动腔分隔,圆环形磁性线圈黏附在多晶硅振膜层下表面。本发明专利技术对低频信号极其敏感,既能满足声学传感器的性能,又可以实现能量采集。

An acoustic sensor with energy harvesting function and its making method

The invention relates to an acoustic sensor with energy acquisition function and a manufacturing method thereof. The conventional capacitive acoustic sensor has little response to the external low frequency signal, which results in the neglect of part of the energy of the acoustic signal. The invention comprises a silicon substrate, a SiO2 etching stop layer, a polycrystalline silicon coil, a SiO2 vibration film support layer, a polycrystalline silicon vibration film support layer, a SiO2 back electrode support layer, a SiNx insulating layer, a polycrystalline silicon back plate layer and an Al2O3 passivating layer in turn from the bottom to the top. Square spiral polycrystalline silicon coil is located between SiO2 etching stop layer and SiO2 film support layer, embedded in SiO2 film support layer. The polycrystalline silicon film is mounted on the back cavity, which is separated from the vibration cavity. The circular magnetic coil is attached to the bottom surface of the polycrystalline silicon film. The invention is extremely sensitive to low frequency signals, and can not only satisfy the performance of acoustic sensors, but also realize energy acquisition.

【技术实现步骤摘要】
一种具有能量采集功能的声学传感器及其制作方法
本专利技术属于硅微机械加工
,涉及一种具有能量采集功能的声学传感器及其制作方法。
技术介绍
传统的声学传感器是一个可以接收声波并且能够把声信号转换成电测仪器能够识别的电信号的设备,从而使得不易被测量的声学量能够很容易被测出,也使得声波被人们更为广泛的研究和利用。典型的声学传感器工作原理就是声电转换,即把不易测量的声音信号转换成为容易被电测仪器测出的电信号。目前应用最多的声学传感器主要有动圈式、压电陶瓷式和电容式三大类,其他类型的,如果细分的话,也都属于这三大类之中。而在这三种转换方式中,应用最广泛的就是电容式。随着智能时代的发展,传感器得到了前所未有的普及。在传感器遍布各地的同时,能量损耗的问题亟待解决。我们迫切的需要传感器可以自给自足,通过自身就可以对能量进行收集,从而摆脱外界能源的限制,实现更多灵活多样的应用。而且,我们认为自然界中的能量无所不在,触手可及,只需加以采集即可使用。例如,振动是一种无处不在的能量之源,我们可以通过感知微小的振动,并将其能量进行采集,进而给传感器供能。因此,我们设计了一种可以采集能量的声学传感器,在不增加工艺复杂度的同时,既可以感知声学,又可以作为一种能量采集装置,从而真正实现低功耗,甚至零功耗传感器。目前,在许多无线传感器中都有能量采集功能,这些传感器都能够实现自给供能,然而,我们认为在其他传感器中也需要实现自给供能,满足低功耗需求。其中,较为直接的就是声学传感器,它可以感知声音产生振动,从而实现能量收集。传统的电容式声学传感器存在一个问题,它对外界低频信号几乎不响应,比如10~50Hz,这也就导致声学信号的部分能量被忽略了。
技术实现思路
本专利技术的目的就是针对现有技术的不足,提供一种具有能量采集功能的声学传感器,既不影响声学传感器的灵敏度,又可以将被忽略的低频信号的能量进行采集。本专利技术同时提供该声学传感器的制作方法。本专利技术的声学传感器由下向上依次包括硅衬底、SiO2刻蚀停止层、多晶硅线圈、SiO2振膜支撑层、多晶硅振膜层、SiO2背电极支撑层、SiNx绝缘层、多晶硅背板层、Al2O3钝化层。方形螺旋线条状的多晶硅线圈位于SiO2刻蚀停止层与SiO2振膜支撑层之间,并嵌在SiO2振膜支撑层内。贯穿硅衬底、SiO2刻蚀停止层和SiO2振膜支撑层开设有圆筒形的背腔,贯穿SiO2背电极支撑层开设有圆筒形的振动腔。多晶硅振膜层架设在背腔上,将背腔和振动腔分隔,圆环形磁性线圈通过圆环形SiO2支架黏附在多晶硅振膜层的下表面。SiNx绝缘层、多晶硅背板层和Al2O3钝化层构成复合型背板,复合型背板架设在振动腔上;贯穿复合型背板设有通孔,多个通孔成矩阵排列;复合型背板下表面设置有防粘着点,多个防粘着点成矩阵排列;通孔与防粘着点交错布置。两个线圈电极和分别依次穿过Al2O3钝化层、SiO2背电极支撑层、SiO2振膜支撑层设置,一端与多晶硅线圈相接,另一端伸出Al2O3钝化层。一个振膜电极依次穿过Al2O3钝化层、SiO2背电极支撑层设置,一端与多晶硅振膜层相接,另一端伸出Al2O3钝化层;一个背电极穿过Al2O3钝化层设置,一端与多晶硅背板层相接,另一端伸出Al2O3钝化层。所述的线圈电极、振膜电极、背电极为圆柱形电极。进一步,所述的硅衬底的厚度为300~500um。进一步,所述的SiO2刻蚀停止层、SiO2振膜支撑层是厚度为200~1000nm的SiO2薄膜。进一步,所述的多晶硅振膜层是厚度为100~500nm的多晶硅薄膜。进一步,所述的SiO2背电极支撑层是300~500um的SiO2层。进一步,所述的SiNx绝缘层是200~500nm的SiNx薄膜。进一步,所述的多晶硅背板层是200~500nm多晶硅薄膜。进一步,所述的Al2O3钝化层是500~1000nmAl2O3薄膜。多晶硅振膜层感知声波与振动,多晶硅振膜层与多晶硅背板层形成电容,并且在振动过程中产生磁通量的变化。多晶硅线圈感应磁通量的变化,形成感应电流,通过两个存能电极即可采集电能进行存储。振动腔的作用是作为电容的介质层。磁性线圈黏附在振膜上可以有选择性的增强低频信号的响应,那些几乎没有什么作用的低频信号的能量就能被采集。随着振膜的振动,磁性线圈与多晶硅线圈间的磁通量会发生变化,因此感应线圈中就会出现感应电流,采用多晶硅线圈,导电性能和金属相媲美,对制作而言又不增加工艺复杂度。该具有能量采集功能的声学传感器的制作方法具体步骤如下:步骤(1).采用化学气相沉积技术、热氧化法或正硅酸乙酯热分解法在厚度为300~500um的硅衬底上制备厚度为200~1000nm的SiO2薄膜,该SiO2薄膜层即为SiO2刻蚀停止层;步骤(2).SiO2刻蚀停止层上采用化学气相沉积技术制备100~500nm的多晶硅薄膜;在该多晶硅薄膜层的中心保留一圆形区域,而在该区域外靠近边缘位置,采用光刻刻蚀方法刻蚀出方形螺旋线条状突起,作为多晶硅线圈;在该多晶硅薄膜层的圆形保留区域,采用光刻刻蚀方法刻蚀出同心圆环凹槽结构,用于后期制作圆环形SiO2支架;步骤(3).采用lift-off技术在圆环凹槽结构内填充磁性材料,填充的高度小于凹槽的深度,形成圆环形磁性线圈;步骤(4).采用正硅酸乙酯热分解法,制备厚度为200~1000nm的SiO2薄膜,作为SiO2振膜支撑层;SiO2振膜支撑层上对应多晶硅线圈的两个端部位置,开设两个振膜支撑层线圈电极孔;步骤(5).在SiO2振膜支撑层上,采用化学气相沉积技术制备100~500nm的多晶硅薄膜;在该多晶硅薄膜层采用光刻刻蚀方法刻蚀出圆形的振膜结构,作为多晶硅振膜层;步骤(6).在多晶硅振膜层上,采用正硅酸乙酯热分解法覆盖300~500um的SiO2,将圆形的多晶硅振膜层包裹;在其表面采用光刻刻蚀方法刻蚀出均匀分布的点状凹槽,用于后期形成防粘着点,该层作为SiO2背电极支撑层;SiO2背电极支撑层上对应振膜支撑层线圈电极孔位置,开设两个背电极支撑层线圈电极孔;对应多晶硅振膜层位置开设一个背电极支撑层振膜电极孔;步骤(7).在SiO2背电极支撑层上,采用化学气相沉积技术制备200~500nm的SiNx薄膜,作为SiNx绝缘层;填充到点状凹槽内的SiNx作为防粘着点;步骤(8).在SiNx绝缘层上,采用化学气相沉积技术制备200~500nm多晶硅薄膜,作为多晶硅背板层;步骤(9).采用光刻刻蚀方法,将SiNx绝缘层和多晶硅背板层刻蚀出圆形背电极结构;步骤(10).在多晶硅背板层上,采用光学镀膜法制备500~1000nmAl2O3薄膜,作为Al2O3钝化层,Al2O3钝化层将圆形背电极包裹;Al2O3钝化层上对应电极支撑层线圈电极孔位置,开设两个钝化层线圈电极孔;对应背电极支撑层振膜电极孔位置开设一个钝化层振膜电极孔;对应多晶硅背板层开设有背电极孔;步骤(11).采用光刻刻蚀方法将SiNx绝缘层、多晶硅背板层和Al2O3钝化层刻穿,刻蚀出均匀分布的通孔,通孔与防粘着点交错布置;步骤(12).由硅衬底的下表面开始,采用光刻刻蚀方法将硅衬底刻穿,形成硅衬底通孔;步骤(13).由SiO2刻蚀停止层的下表面开始,沿硅衬底通孔采用气态氢氟酸腐蚀技术或氢氟酸湿法刻蚀方法将SiO本文档来自技高网
...

【技术保护点】
1.一种具有能量采集功能的声学传感器,其特征在于:由下向上依次包括硅衬底(1)、SiO2刻蚀停止层(2)、多晶硅线圈(3)、SiO2振膜支撑层(4)、多晶硅振膜层(5)、SiO2背电极支撑层(6)、SiNx绝缘层(7)、多晶硅背板层(8)、Al2O3钝化层(9);方形螺旋线条状的多晶硅线圈(3)位于SiO2刻蚀停止层(2)与SiO2振膜支撑层(4)之间,并嵌在SiO2振膜支撑层(4)内;贯穿硅衬底(1)、SiO2刻蚀停止层(2)和SiO2振膜支撑层(4)开设有圆筒形的背腔(10),贯穿SiO2背电极支撑层(6)开设有圆筒形的振动腔(11);圆形的多晶硅振膜层(5)架设在背腔(10)上,将背腔(10)和振动腔(11)分隔,圆环形磁性线圈(12)通过圆环形SiO2支架(13)黏附在多晶硅振膜层(5)的下表面;SiNx绝缘层(7)、多晶硅背板层(8)和Al2O3钝化层(9)构成复合型背板,复合型背板架设在振动腔(11)上;贯穿复合型背板设有通孔(14),多个通孔(14)成矩阵排列;复合型背板下表面设置有防粘着点(15),多个防粘着点(15)成矩阵排列;通孔(14)与防粘着点(15)交错布置;两个线圈电极(16)和(17)分别依次穿过Al2O3钝化层(9)、SiO2背电极支撑层(6)、SiO2振膜支撑层(4)设置,一端与多晶硅线圈(3)相接,另一端伸出Al2O3钝化层(9);一个振膜电极(18)依次穿过Al2O3钝化层(9)、SiO2背电极支撑层(6)设置,一端与多晶硅振膜层(5)相接,另一端伸出Al2O3钝化层(9);一个背电极(19)穿过Al2O3钝化层(9)设置,一端与多晶硅背板层(8)相接,另一端伸出Al2O3钝化层(9);所述的线圈电极、振膜电极、背电极为圆柱形电极。...

【技术特征摘要】
1.一种具有能量采集功能的声学传感器,其特征在于:由下向上依次包括硅衬底(1)、SiO2刻蚀停止层(2)、多晶硅线圈(3)、SiO2振膜支撑层(4)、多晶硅振膜层(5)、SiO2背电极支撑层(6)、SiNx绝缘层(7)、多晶硅背板层(8)、Al2O3钝化层(9);方形螺旋线条状的多晶硅线圈(3)位于SiO2刻蚀停止层(2)与SiO2振膜支撑层(4)之间,并嵌在SiO2振膜支撑层(4)内;贯穿硅衬底(1)、SiO2刻蚀停止层(2)和SiO2振膜支撑层(4)开设有圆筒形的背腔(10),贯穿SiO2背电极支撑层(6)开设有圆筒形的振动腔(11);圆形的多晶硅振膜层(5)架设在背腔(10)上,将背腔(10)和振动腔(11)分隔,圆环形磁性线圈(12)通过圆环形SiO2支架(13)黏附在多晶硅振膜层(5)的下表面;SiNx绝缘层(7)、多晶硅背板层(8)和Al2O3钝化层(9)构成复合型背板,复合型背板架设在振动腔(11)上;贯穿复合型背板设有通孔(14),多个通孔(14)成矩阵排列;复合型背板下表面设置有防粘着点(15),多个防粘着点(15)成矩阵排列;通孔(14)与防粘着点(15)交错布置;两个线圈电极(16)和(17)分别依次穿过Al2O3钝化层(9)、SiO2背电极支撑层(6)、SiO2振膜支撑层(4)设置,一端与多晶硅线圈(3)相接,另一端伸出Al2O3钝化层(9);一个振膜电极(18)依次穿过Al2O3钝化层(9)、SiO2背电极支撑层(6)设置,一端与多晶硅振膜层(5)相接,另一端伸出Al2O3钝化层(9);一个背电极(19)穿过Al2O3钝化层(9)设置,一端与多晶硅背板层(8)相接,另一端伸出Al2O3钝化层(9);所述的线圈电极、振膜电极、背电极为圆柱形电极。2.如权利要求1所述的一种具有能量采集功能的声学传感器,其特征在于:所述的硅衬底(1)的厚度为300~500um。3.如权利要求1所述的一种具有能量采集功能的声学传感器,其特征在于:所述的SiO2刻蚀停止层(2)、SiO2振膜支撑层(4)是厚度为200~1000nm的SiO2薄膜。4.如权利要求1所述的一种具有能量采集功能的声学传感器,其特征在于:所述的多晶硅振膜层(5)是厚度为100~500nm的多晶硅薄膜。5.如权利要求1所述的一种具有能量采集功能的声学传感器,其特征在于:所述的SiO2背电极支撑层(6)是300~500um的SiO2层。6.如权利要求1所述的一种具有能量采集功能的声学传感器,其特征在于:所述的SiNx绝缘层(7)是200~500nm的SiNx薄膜。7.如权利要求1所述的一种具有能量采集功能的声学传感器,其特征在于:所述的多晶硅背板层(8)是200~500nm多晶硅薄膜。8.如权利要求1所述的一种具有能量采集功能的声学传感器,其特征在于:所述的Al2O3钝化层(9)是500~1000nmAl2O3薄膜。9.如权利要求1所述的一种具有能量采集功能的声学传感器的制作方法,其特征在于该方法的具体步骤是:步骤(1).采用化学气相沉积技术、热氧化法或正硅酸乙酯热分解法在厚度为300~500um的硅衬底(1)上制备厚度为200~1000nm的SiO2薄膜,该SiO2薄膜层即为SiO2刻蚀停止层(2);步骤(2).SiO2刻蚀停止层(2)上采用化学气相沉积技术制备100~500nm的多晶硅薄膜;在该多晶硅薄膜层的中心保留一圆形区域,而在该区域外靠近边缘位置,采用光刻刻蚀方法刻蚀出方形螺旋线条状突起,作为多晶硅线圈(3);在该多晶硅薄膜层的圆形保留区域,采用光刻刻蚀方法刻蚀出同心圆环凹槽结构,用于后期...

【专利技术属性】
技术研发人员:吴丽翔王俊力王高峰
申请(专利权)人:杭州电子科技大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1