基于遗传算法选频的CT二次回路窃电监测方法技术

技术编号:18614310 阅读:26 留言:0更新日期:2018-08-05 00:08
本发明专利技术涉及基于遗传算法选频的CT二次回路窃电监测方法,通过计算、记录不同频率下CT二次回路分别对应各CT检测电压值的电压匹配差值,当存在CT检测电压值的电压匹配差值位于允许匹配差标准值范围内时,结束遗传算法选频,并以此时CT二次回路的输入频率作为CT二次回路在开路状态下的谐振点注入频率;否则,通过设置重复执行次数,直到出现满足结束针对CT二次回路的遗传算法选频过程的电压匹配差值位置;在仍旧没有满足该CT二次回路的遗传算法选频过程结束条件情况时,以所记录电压匹配差值中的最小值所对应的输入频率作为CT二次回路的谐振点注入频率,获取其短路谐振点采样电压值,通过判断正常状态下电力终端内CT二次回路状态准确判断CT二次回路的当前状态。

【技术实现步骤摘要】
基于遗传算法选频的CT二次回路窃电监测方法
本专利技术涉及电力监测领域,尤其涉及一种基于遗传算法选频的CT二次回路窃电监测方法。
技术介绍
电流互感器(CT)是电网保护、调节、测量和监视系统的重要组成部分,对电力系统的安全稳定运行起着至关重要的作用。长期以来,一些不法电力用户通过针对电力终端采用CT二次开路或者CT二次短路的方法进行窃电非法获利,以使得电能表所计电量小于实际所用电量,甚至不计电量,造成国家电能大量流失,严重损害了电力企业的合法权益,不但影响了电力企业的发展,同时也给用户用电带来重大的安全隐患,因此需要监测CT二次回路是否存在窃电风险。
技术实现思路
本专利技术所要解决的技术问题是针对上述现有技术提供一种基于遗传算法选频的CT二次回路窃电监测方法。本专利技术解决上述技术问题所采用的技术方案为:基于遗传算法选频的CT二次回路窃电监测方法,用于具有CT二次回路的电力终端,其特征在于,所述基于遗传算法选频的CT二次回路窃电监测方法包括如下步骤1至步骤10:步骤1,在所述电力终端内的CT二次回路处于开路状态下,预先设置针对所述CT二次回路的采样电压基准值、针对CT二次回路结束遗传算法选频的CT检测电压的允许匹配差标准值范围以及向所述CT二次回路所输出频率的预设频率范围;其中,所述CT二次回路的采样电压基准值标记为U(H),针对CT二次回路的CT检测电压的所述允许匹配差标准值范围标记为X,向所述CT二次回路所输出频率的预设频率范围标记为(FStart,FEnd),FStart为所述预设频率范围的起始频率,FEnd为所述预设频率范围的终止频率;0≤H≤N-1;步骤2,在所述预设频率范围内随机产生多个数目的输出频率,并将产生的所述多个数目的输出频率作为CT二次回路的输入频率输出给电力终端内的CT二次回路;其中,在所述预设频率范围内所随机产生输出频率的数目标记为N,在所述预设频率范围内随机产生的第f个输出频率标记为F(f),FStart≤F(f)≤FEnd,0≤f≤N-1;步骤3,针对所述电力终端内的CT二次回路进行实时电压采样,获取CT二次回路在各输出频率下所对应的CT检测电压值,形成针对所述CT二次回路的各输入频率与CT检测电压值之间的对应关系列表;其中,所述CT二次回路在输入频率F(f)下的CT检测电压值为U(f);步骤4,根据所述CT二次回路的采样电压基准值以及所获取的处于开路状况下CT二次回路的各CT检测电压值,得到并记录CT二次回路分别对应各CT检测电压值的电压匹配差值;其中,所述CT二次回路对应CT检测电压值的电压匹配差值标记为△U(f):△U(f)=|U(f)-U(H)|;0≤f≤N-1;步骤5,根据所得CT二次回路分别对应各CT检测电压值的电压匹配差值以及所述CT检测电压的允许匹配差标准值范围,判断是否结束针对CT二次回路的遗传算法选频:当存在所述CT二次回路的CT检测电压值的电压匹配差值位于所述CT检测电压的允许匹配差标准值范围内时,结束针对CT二次回路的遗传算法选频过程,记录该状态下CT二次回路的输入频率以及对应该输入频率的CT检测电压值,并以此时CT二次回路的输入频率作为CT二次回路在开路状态下的谐振点注入频率,以此时对应该谐振点注入频率的CT检测电压值作为CT二次回路在开路状态下的开路谐振点检测电压值,转入步骤8;否则,转入步骤6;其中,所述CT二次回路在开路状态下的谐振点注入频率标记为F(f0),所述CT二次回路在开路状态下的开路谐振点检测电压值标记为UOpen(f0);步骤6,预先设置针对CT二次回路结束遗传算法的预设重复执行次数,并在步骤2所随机产生的N个输出频率中择优选取多个数目的输出频率并再次转至执行步骤3至步骤5,记录此时各输出频率所对应的CT检测电压值以及分别对应此时各CT检测电压值的电压匹配差值,直到预设重复执行次数执行完毕或者出现存在所述CT二次回路的CT检测电压值的电压匹配差值位于所述CT检测电压的允许匹配差标准值范围内时结束针对CT二次回路的遗传算法选频过程;否则,转入步骤7;其中,在步骤2所随机产生的N个输出频率中择优选取的输出频率个数标记为N',0<N'<N;步骤7,以步骤4和步骤6中所记录电压匹配差值中的最小值所对应的CT检测电压值作为CT二次回路在开路状态下的开路谐振点检测电压值,并以此时的该开路谐振点检测电压值所对应的输入频率作为所述CT二次回路在开路状态下的谐振点注入频率,转入步骤8;步骤8,所述电力终端内的CT二次回路在短路状态下,得到所述CT二次回路在所述谐振点注入频率下所对应的CT检测电压值,并以该CT检测电压值作为CT二次回路在短路状态下的短路谐振点检测电压值;其中,所述CT二次回路在短路状态下的短路谐振点检测电压值标记为UShort(f0);步骤9,所述电力终端在正常工作状态下,向电力终端内的CT二次回路注入所述谐振点注入频率,得到CT二次回路在当前状态下的当前CT检测电压值;其中,所述CT二次回路在当前状态下的当前CT检测电压值标记为UCur,所述CT二次回路在当前状态下的当前电力终端输入电流值标记为ICur;步骤10,根据所述CT二次回路的开路谐振点检测电压值、短路谐振点检测电压值以及步骤9所得当前状态下的当前CT检测电压值进行判断,判断CT二次回路的当前状态,以获知CT二次回路当前是否存在被窃电风险:当所述当前CT检测电压值UCur>UOpen(f0)·α且所述当前电力终端输入电流值ICur<IThe,Open时,判断CT二次回路当前处于开路状态,所述CT二次回路存在被窃电风险;其中,所述α表示CT二次回路的CT开路比例阈值,IThe,Open表示开路状态下的CT二次回路在谐振点注入频率F(f0)时所对应的CT开路电流阈值;当所述当前CT检测电压值UCur<[UShort(f0)+(UOpen(f0)-UShort(f0))·β]且所述当前电力终端输入电流值ICur<IThe,Short时,判断CT二次回路当前处于短路状态,所述CT二次回路存在被窃电风险;其中,所述β表示CT二次回路的CT短路比例阈值,IThe,Short表示短路状态下的CT二次回路在谐振点注入频率F(f0)时对应的CT短路电流阈值;当所述CT二次回路当前不处于开路状态且不处于短路状态时,判断CT二次回路当前处于正常用电状态,所述CT二次回路不存在被窃电风险。改进地,在所述基于遗传算法选频的CT二次回路窃电监测方法中,所述CT二次回路的CT开路比例阈值α∈[0.75,0.85],所述CT开路电流阈值0<IThe,Open<I额定·0.5%,I额定为所述电力终端的额定电流值。优选地,所述CT二次回路的CT开路比例阈值α=0.8。改进地,在所述基于遗传算法选频的CT二次回路窃电监测方法中,所述CT二次回路的CT短路比例阈值β∈[0.25,0.35],所述CT短路电流阈值IThe,Short=I额定+△I,I额定为所述电力终端的额定电流值,△I→0+。优选地,所述CT二次回路的CT短路比例阈值β=0.3。进一步地,在所述基于遗传算法选频的CT二次回路窃电监测方本文档来自技高网...

【技术保护点】
1.基于遗传算法选频的CT二次回路窃电监测方法,用于具有CT二次回路的电力终端,其特征在于,所述基于遗传算法选频的CT二次回路窃电监测方法包括如下步骤1至步骤10:步骤1,在所述电力终端内的CT二次回路处于开路状态下,预先设置针对所述CT二次回路的采样电压基准值、针对CT二次回路结束遗传算法选频的CT检测电压的允许匹配差标准值范围以及向所述CT二次回路所输出频率的预设频率范围;其中,所述CT二次回路的采样电压基准值标记为U(H),针对CT二次回路的CT检测电压的所述允许匹配差标准值范围标记为X,向所述CT二次回路所输出频率的预设频率范围标记为(FStart,FEnd),FStart为所述预设频率范围的起始频率,FEnd为所述预设频率范围的终止频率;0≤H≤N‑1;步骤2,在所述预设频率范围内随机产生多个数目的输出频率,并将产生的所述多个数目的输出频率作为CT二次回路的输入频率输出给电力终端内的CT二次回路;其中,在所述预设频率范围内所随机产生输出频率的数目标记为N,在所述预设频率范围内随机产生的第f个输出频率标记为F(f),FStart≤F(f)≤FEnd,0≤f≤N‑1;步骤3,针对所述电力终端内的CT二次回路进行实时电压采样,获取CT二次回路在各输出频率下所对应的CT检测电压值,形成针对所述CT二次回路的各输入频率与CT检测电压值之间的对应关系列表;其中,所述CT二次回路在输入频率F(f)下的CT检测电压值为U(f);步骤4,根据所述CT二次回路的采样电压基准值以及所获取的处于开路状况下CT二次回路的各CT检测电压值,得到并记录CT二次回路分别对应各CT检测电压值的电压匹配差值;其中,所述CT二次回路对应CT检测电压值的电压匹配差值标记为△U(f):△U(f)=|U(f)‑U(H)|;0≤f≤N‑1;步骤5,根据所得CT二次回路分别对应各CT检测电压值的电压匹配差值以及所述CT检测电压的允许匹配差标准值范围,判断是否结束针对CT二次回路的遗传算法选频:当存在所述CT二次回路的CT检测电压值的电压匹配差值位于所述CT检测电压的允许匹配差标准值范围内时,结束针对CT二次回路的遗传算法选频过程,记录该状态下CT二次回路的输入频率以及对应该输入频率的CT检测电压值,并以此时CT二次回路的输入频率作为CT二次回路在开路状态下的谐振点注入频率,以此时对应该谐振点注入频率的CT检测电压值作为CT二次回路在开路状态下的开路谐振点检测电压值,转入步骤8;否则,转入步骤6;其中,所述CT二次回路在开路状态下的谐振点注入频率标记为F(f0),所述CT二次回路在开路状态下的开路谐振点检测电压值标记为UOpen(f0);步骤6,预先设置针对CT二次回路结束遗传算法的预设重复执行次数,并在步骤2所随机产生的N个输出频率中择优选取多个数目的输出频率并再次转至执行步骤3至步骤5,记录此时各输出频率所对应的CT检测电压值以及分别对应此时各CT检测电压值的电压匹配差值,直到预设重复执行次数执行完毕或者出现存在所述CT二次回路的CT检测电压值的电压匹配差值位于所述CT检测电压的允许匹配差标准值范围内时结束针对CT二次回路的遗传算法选频过程;否则,转入步骤7;其中,在步骤2所随机产生的N个输出频率中择优选取的输出频率个数标记为N',0...

【技术特征摘要】
1.基于遗传算法选频的CT二次回路窃电监测方法,用于具有CT二次回路的电力终端,其特征在于,所述基于遗传算法选频的CT二次回路窃电监测方法包括如下步骤1至步骤10:步骤1,在所述电力终端内的CT二次回路处于开路状态下,预先设置针对所述CT二次回路的采样电压基准值、针对CT二次回路结束遗传算法选频的CT检测电压的允许匹配差标准值范围以及向所述CT二次回路所输出频率的预设频率范围;其中,所述CT二次回路的采样电压基准值标记为U(H),针对CT二次回路的CT检测电压的所述允许匹配差标准值范围标记为X,向所述CT二次回路所输出频率的预设频率范围标记为(FStart,FEnd),FStart为所述预设频率范围的起始频率,FEnd为所述预设频率范围的终止频率;0≤H≤N-1;步骤2,在所述预设频率范围内随机产生多个数目的输出频率,并将产生的所述多个数目的输出频率作为CT二次回路的输入频率输出给电力终端内的CT二次回路;其中,在所述预设频率范围内所随机产生输出频率的数目标记为N,在所述预设频率范围内随机产生的第f个输出频率标记为F(f),FStart≤F(f)≤FEnd,0≤f≤N-1;步骤3,针对所述电力终端内的CT二次回路进行实时电压采样,获取CT二次回路在各输出频率下所对应的CT检测电压值,形成针对所述CT二次回路的各输入频率与CT检测电压值之间的对应关系列表;其中,所述CT二次回路在输入频率F(f)下的CT检测电压值为U(f);步骤4,根据所述CT二次回路的采样电压基准值以及所获取的处于开路状况下CT二次回路的各CT检测电压值,得到并记录CT二次回路分别对应各CT检测电压值的电压匹配差值;其中,所述CT二次回路对应CT检测电压值的电压匹配差值标记为△U(f):△U(f)=|U(f)-U(H)|;0≤f≤N-1;步骤5,根据所得CT二次回路分别对应各CT检测电压值的电压匹配差值以及所述CT检测电压的允许匹配差标准值范围,判断是否结束针对CT二次回路的遗传算法选频:当存在所述CT二次回路的CT检测电压值的电压匹配差值位于所述CT检测电压的允许匹配差标准值范围内时,结束针对CT二次回路的遗传算法选频过程,记录该状态下CT二次回路的输入频率以及对应该输入频率的CT检测电压值,并以此时CT二次回路的输入频率作为CT二次回路在开路状态下的谐振点注入频率,以此时对应该谐振点注入频率的CT检测电压值作为CT二次回路在开路状态下的开路谐振点检测电压值,转入步骤8;否则,转入步骤6;其中,所述CT二次回路在开路状态下的谐振点注入频率标记为F(f0),所述CT二次回路在开路状态下的开路谐振点检测电压值标记为UOpen(f0);步骤6,预先设置针对CT二次回路结束遗传算法的预设重复执行次数,并在步骤2所随机产生的N个输出频率中择优选取多个数目的输出频率并再次转至执行步骤3至步骤5,记录此时各输出频率所对应的CT检测电压值以及分别对应此时各CT检测电压值的电压匹配差值,直到预设重复执行次数执行完毕或者出现存在所述CT二次回路的CT检测电压值的电压匹配差值位于所述CT检测电压的允许匹配差标准值范围内时结束针对CT二次回路的遗传算法选频过程;否则,转入步骤7;其中,在步骤2所随机产生的N个输出频率中择优选取的输出频率个数标记为N',0<N'<N;步骤7,以步骤4和步骤6中所记录电压匹配差值中的最小值所对应的CT检测电压值作为CT二次回路在开路状态下的开路谐振点检测电压值,并以此时的该开路谐振点检测电压值所对应的输入频率作为所述CT二次回路在开路状态下的谐振点注入频率,转入步骤8;步骤8,所述电力终端内的CT二次回路在短路状态...

【专利技术属性】
技术研发人员:王培慧谢虎
申请(专利权)人:宁波三星医疗电气股份有限公司
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1