一种基于三级卷积神经网络的物体抓取检测方法技术

技术编号:17914200 阅读:69 留言:0更新日期:2018-05-10 19:18
本发明专利技术公开了一种基于三级串联卷积神经网络的物体抓取检测方法,包括:1获取数据集;2构建第一级、第二级和第三级卷积神经网络的网络结构,并训练卷积神经网络;3利用训练后的三级串联卷积神经网络获取目标物的预选抓取框和预选抓取框的评判值;4通过评判值获取最佳抓取框;5确定所述目标物的位置与姿态。本发明专利技术能提高抓取框的准确度,实现对未知物体的高准确度抓取。

【技术实现步骤摘要】
一种基于三级卷积神经网络的物体抓取检测方法
本专利技术属于计算机视觉
,具体涉及一种基于三级卷积神经网络的物体抓取检测方法。
技术介绍
物体抓取操作作为机器人的基本功能,一直是机器人领域的一个重要的研究方向。为了提高物体抓取的成功率和准确度,很多研究者将物体的抓取点作为研究对象,通过选择物体的最佳抓取点来提高抓取的成功率和准确度。在深度学习提出来前,大多数情况下都是通过手工设计特征或通过物体的三维模型来确定物体的抓取点,这样获得的抓取点准确度较高,但只能针对特殊物体或已知三维模型的物体,而不能获得未知物体的抓取点。深度学习提出后,虽然可以利用卷积神经网络对未知物体进行检测,但是抓取点的正确率相对较低,需要进一步提高,因此,目前需要进一步改善获取最佳抓取点的方法,使得物体抓取不受未知物体限制,并具有较高的抓取成功率和准确度。
技术实现思路
本专利技术针对目前对物体的抓取检测不足之处,提供一种基于三级卷积神经网络的物体抓取检测方法,以期能提高抓取框的准确度,实现对未知物体的高准确度抓取检测。本专利技术为解决技术问题采用如下技术方案:本专利技术一种基于三级卷积神经网络的物体抓取检测方法,本文档来自技高网...
一种基于三级卷积神经网络的物体抓取检测方法

【技术保护点】
一种基于三级卷积神经网络的物体抓取检测方法,是应用于由机器人、摄像机、目标物所组成的物体抓取操作中,其特征是,所述物体抓取检测方法是按如下步骤进行:步骤1:获取第一组数据集和第二组数据集,所述第一组数据集用于训练第一级卷积神经网络,所述第二组数据集用于训练第二级和第三级卷积神经网络;步骤2:构建第一级、第二级和第三级卷积神经网络,并利用所述第一组数据集和第二组数据集离线训练所述第一级、第二级和第三级卷积神经网络的参数,从而得到卷积神经网络模型;步骤3:由所述摄像机获取所述目标物的图像,并作为所述卷积神经网络模型的输入;步骤4:基于第一级卷积神经网络,通过滑动窗的方式对所述目标物的图像空间进行搜...

【技术特征摘要】
1.一种基于三级卷积神经网络的物体抓取检测方法,是应用于由机器人、摄像机、目标物所组成的物体抓取操作中,其特征是,所述物体抓取检测方法是按如下步骤进行:步骤1:获取第一组数据集和第二组数据集,所述第一组数据集用于训练第一级卷积神经网络,所述第二组数据集用于训练第二级和第三级卷积神经网络;步骤2:构建第一级、第二级和第三级卷积神经网络,并利用所述第一组数据集和第二组数据集离线训练所述第一级、第二级和第三级卷积神经网络的参数,从而得到卷积神经网络模型;步骤3:由所述摄像机获取所述目标物的图像,并作为所述卷积神经网络模型的输入;步骤4:基于第一级卷积神经网络,通过滑动窗的方式对所述目标物的图像空间进行搜索,寻找出所述目标物的初步位置;步骤5:基于第二级卷积神经网络,通过滑动窗的方式对所述初步位置进行搜索,并确定若干个抓取矩形框作为预选抓取框;步骤6:利用第三级卷积神经网络对所述预选抓取框进行精确评判,获取每个预选抓取框的评判值;步骤7:根据预选抓取框的评判值对预选抓取框进行降序排序,并选出排名前N的预选抓取框;获取N个预选抓取框的各个中心点,并对所述各个中心点求取中心平均值,根据所述中心平均值分别得到N个预选抓取框的均方差,并选择均方差最小的预选抓取框作为最优抓取框;步骤8:使用所述最优抓取框确定所述目标物的位置与姿态。2.根据权利要求1所述的基于三级卷积神经网络的物体抓取检测方法,其特征在于:步骤1中的第一组数据集和第二组数据集按如下步骤获取:步骤1.1:利用所述摄像机获取各种抓取物体的RGB图像,记任意一张RGB图像为u;步骤1.2:对RGB图像u进行网格划分,获得n张相同大小的矩形图片,记任意一张矩形图片为r;若所述矩形图片r包含抓取物,则令矩形图片r的标签为1;若所述矩形图片r不包含抓取物,则令矩形图片r的标签为0,从而得到所有带标签的矩形图片构成第一组数据集;步骤1.3:利用矩形框对RGB图像u进行截取,获取若干个的随机矩形图片,记任意一张随机矩形图片为s;判断随机矩形图片s中所包含的抓取物是否能实现物体抓取,若能实现,则令随机矩形图片s的标签值属于[α,1];否则,令随机矩形图片s的标签值属于[0,α];从而得到第二组数据集。3.根据权利要求1所述的基于三级卷积神经网络的物体抓取检测方法,其特征在于:步骤2中第一级、第二级和第三级卷积神经网络参数具体包含如下内容:步骤2.1:建立第一级卷积神经网络的结构,包括:一组卷积层、一组池化层和一个全连接层;利用所述第一组数据集学习第一级卷积神经网络的网络函数F1(x,Θ),其中,x为第一组数据集,Θ为第一级卷积神经网络的网络参数;步骤2.2:使用式(1)所示的损失函数更新网络参数Θ:式(1)中,xi是所述第一组数据集中任意一个矩形图片,yi是矩形图片xi所对应的标签;i=1,2,…,N,N是第一组数据集的样本数量;步骤2.3:建立第二级卷积神经网络结构,包含一组卷积层、一组池化层和一个全连接层;利用所述第二组数据集学习第二级卷积神经网络的网络函数F2(x′,Θ′),其中,x′为所述第二组数据集,Θ′为第...

【专利技术属性】
技术研发人员:尚伟伟喻群超张驰丛爽
申请(专利权)人:中国科学技术大学
类型:发明
国别省市:安徽,34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1