一种倾斜煤层动态渗透率预测方法及装置制造方法及图纸

技术编号:17905360 阅读:36 留言:0更新日期:2018-05-10 14:28
本申请实施例提供了一种倾斜煤层动态渗透率预测方法及装置,该方法包括:根据煤层埋深与煤层温度确定煤层等效地温梯度;确定煤层所处开发阶段的储层孔隙压力,并根据所述储层孔隙压力及煤层围压确定煤层水平有效应力;确定甲烷气测煤层渗透率的影响因素的无量纲关系函数,并根据所述无量纲关系函数及不同温度和应力载荷条件下的煤层渗透率数据,确定煤层渗透率的线性回归模型;将所述煤层等效地温梯度及所述煤层水平有效应力代入所述线性回归模型,获得倾斜煤层动态渗透率预测模型;根据所述倾斜煤层动态渗透率预测模型预测倾斜煤层动态渗透率。本申请实施例可提高倾斜煤层动态渗透率预测的准确性。

【技术实现步骤摘要】
一种倾斜煤层动态渗透率预测方法及装置
本申请涉及煤层气开发
,尤其是涉及一种倾斜煤层动态渗透率预测方法及装置。
技术介绍
煤层气作为一种常规油气资源的接替能源,已经成为世界能源结构中的重要组成部分。渗透率作为衡量多孔介质允许流体通过能力的一项指标,是影响煤层气井产量高低、确定煤层气藏可采性的关键衡量指标之一。一方面,在预测煤层气井产量时,需要确定和预测煤层气的运移速度,而流体的流速在很大程度上取决于储层渗透率的大小;另一方面,渗透率是确定煤层气藏开采经济价值高低最常用到的参数。但是因为煤岩质地易碎,气体吸附、解吸对储层渗透率的影响较大,煤储层渗透率又是最难测定的一项参数。目前现有的基于弹性力学建立的渗透率模型为简化计算过程,因而其渗透率预测的准确性难以保证。有鉴于此,目前亟需一种可准确确定倾斜煤层动态渗透率的技术方案。
技术实现思路
本申请实施例的目的在于提供一种倾斜煤层动态渗透率预测方法及装置,以提高倾斜煤层动态渗透率预测准确性。为达到上述目的,一方面,本申请实施例提供了一种倾斜煤层动态渗透率预测方法,包括:根据煤层埋深与煤层温度确定煤层等效地温梯度;确定煤层所处开发阶段的储层孔隙压力,并根据所述储层孔隙压力及煤层围压确定煤层水平有效应力;确定甲烷气测煤层渗透率的影响因素的无量纲关系函数,并根据所述无量纲关系函数及不同温度和应力载荷条件下的煤层渗透率数据,确定煤层渗透率的线性回归模型;将所述煤层等效地温梯度及所述煤层水平有效应力代入所述线性回归模型,获得倾斜煤层动态渗透率预测模型;根据所述倾斜煤层动态渗透率预测模型预测倾斜煤层动态渗透率。优选的,所述根据煤层埋深与煤层温度确定煤层等效地温梯度,包括:根据公式θ=(h-hiso)×Δθ+θiso确定煤层埋深对应的煤层温度;根据Δθequ=θ/h确定煤层等效地温梯度;其中,h为煤层埋深,θ为煤层埋深h对应的煤层温度,hiso为煤层恒温带深度,Δθ为煤层地温梯度,θiso为煤层恒温带温度,Δθequ为煤层等效地温梯度。优选的,所述确定煤层所处开发阶段的储层孔隙压力,包括:根据公式tD=1-pp/ppi确定煤层所处开发阶段的储层孔隙压力;其中,tD为无量纲煤层生产时间,pp为储层孔隙压力,ppi为储层原始孔隙压力。优选的,所述根据所述储层孔隙压力及煤层围压确定煤层水平有效应力,包括:根据公式确定煤层水平有效应力;其中,为煤层水平有效应力,pp为储层孔隙压力,pc为煤层围压。优选的,所述无量纲关系函数包括:和其中,D1反映了无温度约束条件下,应力变化对煤岩渗透率的影响;D2反映了无应力约束条件下,温度变化对煤岩渗透率的影响;D3反映了无温度及应力约束条件下,煤岩裂隙性质对煤岩渗透率的影响;为煤层平有效应力,Δθequ为煤层等效地温梯度,Cθ为煤层热膨胀系数,Cf为煤层裂隙体积压缩系数,μ为煤层流体粘度,ρc为煤岩密度,K为煤层渗透率。优选的,所述根据所述无量纲关系函数及不同温度和应力载荷条件下的煤层渗透率数据,确定煤层渗透率的线性回归模型,包括:通过多元线性线性回归方法,并结合不同温度和应力载荷条件下的煤层渗透率数据,对多个无量纲关系函数进行拟合,获得所述多个无量纲关系函数间的内部关系;将所述内部关系两边取对数,获得煤层渗透率的线性回归模型。优选的,所述煤层渗透率的线性回归模型,包括:其中,为煤层平有效应力,Δθequ为煤层等效地温梯度,Cθ为煤层热膨胀系数,Cf为煤层裂隙体积压缩系数,μ为煤层流体粘度,ρc为煤岩密度,K为煤层渗透率,C1、C1和C3为系数。优选的,所述倾斜煤层动态渗透率预测模型,包括:其中,pp为储层孔隙压力,pc为煤层围压,h为煤层埋深,θ为煤层埋深h对应的煤层温度,Cθ为煤层热膨胀系数,Cf为煤层裂隙体积压缩系数,μ为煤层流体粘度,ρc为煤岩密度,K为煤层渗透率,C1、C1和C3为系数。另一方面,本申请实施例还提供了一种倾斜煤层动态渗透率预测装置,包括:等效地温梯度确定模块,用于根据煤层埋深与煤层温度确定煤层等效地温梯度;水平有效应力确定模块,用于确定煤层所处开发阶段的储层孔隙压力,并根据所述储层孔隙压力及煤层围压确定煤层水平有效应力;线性回归模型确定模块,用于确定甲烷气测煤层渗透率的影响因素的无量纲关系函数,并根据所述无量纲关系函数及不同温度和应力载荷条件下的煤层渗透率数据,确定煤层渗透率的线性回归模型;渗透率预测模型确定模块,用于将所述煤层等效地温梯度及所述煤层水平有效应力代入所述线性回归模型,获得倾斜煤层动态渗透率预测模型;倾斜煤层动态渗透率预测模块,用于根据所述倾斜煤层动态渗透率预测模型预测倾斜煤层动态渗透率。另一方面,本申请实施例还提供了另一种倾斜煤层动态渗透率预测装置,包括存储器、处理器、以及存储在所述存储器上的计算机程序,所述计算机程序被所述处理器运行时执行如下步骤:根据煤层埋深与煤层温度确定煤层等效地温梯度;确定煤层所处开发阶段的储层孔隙压力,并根据所述储层孔隙压力及煤层围压确定煤层水平有效应力;确定甲烷气测煤层渗透率的影响因素的无量纲关系函数,并根据所述无量纲关系函数及不同温度和应力载荷条件下的煤层渗透率数据,确定煤层渗透率的线性回归模型;将所述煤层等效地温梯度及所述煤层水平有效应力代入所述线性回归模型,获得倾斜煤层动态渗透率预测模型;根据所述倾斜煤层动态渗透率预测模型预测倾斜煤层动态渗透率。由以上本申请实施例提供的技术方案可见,本申请实施例首先根据煤层埋深与煤层温度确定煤层等效地温梯度;其次确定煤层所处开发阶段的储层孔隙压力,并根据储层孔隙压力及煤层围压确定煤层水平有效应力;然后确定甲烷气测煤层渗透率的影响因素的无量纲关系函数,并根据无量纲关系函数及不同温度和应力载荷条件下的煤层渗透率数据,确定煤层渗透率的线性回归模型;然后将煤层等效地温梯度及煤层水平有效应力代入线性回归模型,获得倾斜煤层动态渗透率预测模型;从而可根据倾斜煤层动态渗透率预测模型预测倾斜煤层动态渗透率。由于本申请实施例的倾斜煤层动态渗透率预测方法充分考虑了不同埋深煤储层应力、温度等因素对渗透率的影响,从而可获得更为准确的倾斜煤层动态渗透率。因此,通过本申请实施例,可为倾斜煤层气井生产动态检测和复杂结构井目标井段参数优化提供准确可靠的储层物性参数。附图说明为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:图1为本申请一实施例中倾斜煤层动态渗透率预测方法的流程图;图2为本申请一实施例中倾斜煤层动态渗透率预测装置的结构框图;图3为本申请另一实施例中倾斜煤层动态渗透率预测装置的结构框图。具体实施方式为了使本
的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。在实现本申请的过本文档来自技高网
...
一种倾斜煤层动态渗透率预测方法及装置

【技术保护点】
一种倾斜煤层动态渗透率预测方法,其特征在于,包括:根据煤层埋深与煤层温度确定煤层等效地温梯度;确定煤层所处开发阶段的储层孔隙压力,并根据所述储层孔隙压力及煤层围压确定煤层水平有效应力;确定甲烷气测煤层渗透率的影响因素的无量纲关系函数,并根据所述无量纲关系函数及不同温度和应力载荷条件下的煤层渗透率数据,确定煤层渗透率的线性回归模型;将所述煤层等效地温梯度及所述煤层水平有效应力代入所述线性回归模型,获得倾斜煤层动态渗透率预测模型;根据所述倾斜煤层动态渗透率预测模型预测倾斜煤层动态渗透率。

【技术特征摘要】
1.一种倾斜煤层动态渗透率预测方法,其特征在于,包括:根据煤层埋深与煤层温度确定煤层等效地温梯度;确定煤层所处开发阶段的储层孔隙压力,并根据所述储层孔隙压力及煤层围压确定煤层水平有效应力;确定甲烷气测煤层渗透率的影响因素的无量纲关系函数,并根据所述无量纲关系函数及不同温度和应力载荷条件下的煤层渗透率数据,确定煤层渗透率的线性回归模型;将所述煤层等效地温梯度及所述煤层水平有效应力代入所述线性回归模型,获得倾斜煤层动态渗透率预测模型;根据所述倾斜煤层动态渗透率预测模型预测倾斜煤层动态渗透率。2.如权利要求1所述的倾斜煤层动态渗透率预测方法,其特征在于,所述根据煤层埋深与煤层温度确定煤层等效地温梯度,包括:根据公式θ=(h-hiso)×Δθ+θiso确定煤层埋深对应的煤层温度;根据Δθequ=θ/h确定煤层等效地温梯度;其中,h为煤层埋深,θ为煤层埋深h对应的煤层温度,hiso为煤层恒温带深度,Δθ为煤层地温梯度,θiso为煤层恒温带温度,Δθequ为煤层等效地温梯度。3.如权利要求1所述的倾斜煤层动态渗透率预测方法,其特征在于,所述确定煤层所处开发阶段的储层孔隙压力,包括:根据公式tD=1-pp/ppi确定煤层所处开发阶段的储层孔隙压力;其中,tD为无量纲煤层生产时间,pp为储层孔隙压力,ppi为储层原始孔隙压力。4.如权利要求1所述的倾斜煤层动态渗透率预测方法,其特征在于,所述根据所述储层孔隙压力及煤层围压确定煤层水平有效应力,包括:根据公式确定煤层水平有效应力;其中,为煤层水平有效应力,pp为储层孔隙压力,pc为煤层围压。5.如权利要求1所述的倾斜煤层动态渗透率预测方法,其特征在于,所述无量纲关系函数包括:和其中,D1反映了无温度约束条件下,应力变化对煤岩渗透率的影响;D2反映了无应力约束条件下,温度变化对煤岩渗透率的影响;D3反映了无温度及应力约束条件下,煤岩裂隙性质对煤岩渗透率的影响;为煤层平有效应力,Δθequ为煤层等效地温梯度,Cθ为煤层热膨胀系数,Cf为煤层裂隙体积压缩系数,μ为煤层流体粘度,ρc为煤岩密度,K为煤层渗透率。6.如权利要求1所述的倾斜煤层动态渗透率预测方法,其特征在于,所述根据所述无量纲关系函数及不同温度和应力载荷条件下的煤层渗透率数据,确定煤层渗透率的线性回归模型,包括:通过多元线性线性回归方法,并结合不同温度和应力载荷条件下的煤层渗透率数据,对多个无量纲关系函数进行拟合,获得所述多个无量纲关系函数间的内部关系;将所述内部关系两边取对数,获得煤层渗透率的线性回归模型。7.如权利要求1所述的倾斜煤层动态渗透率预测方法,其特征在于,所述煤层渗透率的线性回归模型,包括:

【专利技术属性】
技术研发人员:汪志明曾泉树
申请(专利权)人:中国石油大学北京
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1