一种多约束自主飞行器的程序角优化设计方法技术

技术编号:17810529 阅读:68 留言:0更新日期:2018-04-28 04:16
一种多约束自主飞行器的程序角优化设计方法,包括如下步骤:步骤一、设定对地定向时段起始时刻为T0,设定对地定向时段终止时刻和天基数传时段起始时刻均为T1,设定天基数传时段终止时刻为T2;步骤二、根据飞行器的轨道参数和发射点参数,基于本体坐标系相对于发射惯性坐标系的姿态转换矩阵,计算飞行器对地定向时段的程序角;步骤三、根据天基数传时段飞行器的天线对天基卫星的可见性,确定飞行器的天线和天基卫星,计算飞行器天基数传时段的程序角;步骤四、根据步骤二中飞行器对地定向时段的程序角和步骤三中飞行器天基数传时段的程序角进行平滑。

【技术实现步骤摘要】
一种多约束自主飞行器的程序角优化设计方法
本专利技术涉及一种多约束自主飞行器的程序角优化设计方法,属于飞行器制导、导航与控制领域。
技术介绍
飞行器在轨运行时,往往通过所配置的地球敏感器、太阳敏感器及星敏感器等空间定向寻的装置实施姿态确定与控制,确保飞行器姿态按任务需求变化。然而,针对纯惯组导航方案下的飞行器,其任务要求的姿态变化仅能通过程序控制方案得以实现,而程序控制方案中,程序角的设计是一个关键环节。程序角表征了飞行器在执行任务期间的期望姿态序列,需要满足飞行任务指定的姿态动作,现有的程序角设计方法往往集中于运载火箭的上升段,设计需求较少、姿态约束较为简单,相比之下,在轨飞行器为实现在轨操作、姿态机动、数据通信等需求,需要完成多种姿态(如对地三轴稳定、多次天基对星定向等),同时还需满足控制、热控、遥测控等专业的专业约束。因而,对于含有天地基测控复合需求的飞行任务,其飞行器程序角的设计存在着诸多挑战,以往的程序角设计方法很难直接适用。
技术实现思路
本专利技术要解决的技术问题是:克服现有技术的不足,提供了一种多约束自主飞行器的程序角优化设计方法,采用三次多项式对程序角突变时刻进行了平滑,平滑后的效果好;同时能够确保姿态变化幅度最小,燃料消耗最省;采用轨道系数据作为输入条件,降低程序角计算对飞行器发射时刻的依赖性。本专利技术目的通过以下技术方案予以实现:一种多约束自主飞行器的程序角优化设计方法,包括如下步骤:步骤一、设定对地定向时段起始时刻为T0,设定对地定向时段终止时刻和天基数传时段起始时刻均为T1,设定天基数传时段终止时刻为T2;步骤二、根据飞行器的轨道参数和发射点参数,基于本体坐标系相对于发射惯性坐标系的姿态转换矩阵,计算飞行器对地定向时段的程序角;步骤三、根据天基数传时段飞行器的天线对天基卫星的可见性,确定飞行器的天线和天基卫星,计算飞行器天基数传时段的程序角;步骤四、根据步骤二中飞行器对地定向时段的程序角和步骤三中飞行器天基数传时段的程序角进行平滑。上述多约束自主飞行器的程序角优化设计方法,所述步骤二中飞行器的轨道参数包括:真近点角f,近地点幅角ω,轨道倾角io,升交点赤经Ω;所述发射点参数包括:射向A0,发射点经度λ0,发射点纬度B0。上述多约束自主飞行器的程序角优化设计方法,所述步骤二中本体坐标系相对于发射惯性坐标系的姿态转换矩阵为:式中其中,rij(i=1,2,3,j=1,2,3)为姿态转换矩阵的元素,i为姿态转换矩阵的行序号,j为姿态转换矩阵的列序号,表示发射坐标系与发射惯性系的坐标转换矩阵,t为当前飞行时刻;表示地心直角坐标系与发射坐标系的坐标转换矩阵,表示地心第二轨道坐标系与地心直角坐标系的坐标转换矩阵,表示地心第二轨道坐标系与轨道坐标系的坐标转换矩阵,表示本体坐标系与轨道坐标系的坐标转换矩阵。上述多约束自主飞行器的程序角优化设计方法,所述步骤二中飞行器对地定向时段的程序角为:ψc=-arcsinr31式中其中,rij(i=1,2,3,j=1,2,3)为姿态转换矩阵的元素,i为姿态转换矩阵的行序号,j为姿态转换矩阵的列序号,ψc、γc分别表征飞行器的俯仰程序角、偏航程序角和滚动程序角,t为当前飞行时刻。上述多约束自主飞行器的程序角优化设计方法,对飞行器的天线和天基卫星分别设置序号,根据天基数传时段飞行器的天线对天基卫星的可见性,确定飞行器的天线和天基卫星的方法为:(1)当上一周期所选定的飞行器的天线和上一周期所选定的天基卫星通信可见时,则选取上一周期所选定的飞行器的天线和上一周期所选定的天基卫星保持不变;否则转入步骤(2);(2)当上一周期所选定的飞行器的天线可见一颗以上的天基卫星时,则选取上一周期所选定的飞行器的天线和可见的天基卫星中序号最小的天基卫星通信;否则转入步骤(3);(3)当飞行器的天线可见上一周期所选定的天基卫星时,则选取可见天基卫星中序号最小的飞行器的天线和上一周期所选定的天基卫星通信;否则转入步骤(4);(4)在飞行器的天线和可见的天基卫星中,分别选定序号最小的飞行器的天线和序号最小的天基卫星通信。上述多约束自主飞行器的程序角优化设计方法,所述步骤三中计算飞行器天基数传时段的程序角的方法为:式中α=-arcsinrm,yβ=-arctan(rm,x/rm,z)其中,ψc、γc分别表征飞行器的俯仰程序角、偏航程序角和滚动程序角,α、β分别为第一系数和第二系数,θ为天线夹角,rm,x、rm,y、rm,z为飞行器与天基卫星相对位置矢量的元素,m为飞行器的天线序号,π为圆周率。上述多约束自主飞行器的程序角优化设计方法,利用线性规划方法迭代计算飞行器天基数传时段的俯仰程序角的方法为:以俯仰角为变量,建立优化函数J:上述优化函数满足以下约束:式中α=-arcsinrm,yβ=-arctan(rm,x/rm,z)其中,γc(t)、γc(t-1)分别表征t时刻飞行器的滚动程序角、t-1时刻飞行器的滚动程序角;ψc(t)、ψc(t-1)分别表征t时刻飞行器的偏航程序角、t-1时刻飞行器的偏航程序角;分别表征t时刻飞行器的俯仰程序角、t-1时刻飞行器的俯仰程序角;不等式函数表征热控约束,φ为预置值,θ为天线夹角,α、β分别为第一系数和第二系数,rm,x、rm,y、rm,z为飞行器与天基卫星相对位置矢量的元素,m为飞行器的天线序号,π为圆周率。上述多约束自主飞行器的程序角优化设计方法,所述步骤四中对步骤二中飞行器对地定向时段的程序角和步骤三中飞行器天基数传时段的程序角进行平滑的方法为:(1)确定对地定向时段终止时刻和天基数传时段起始时刻、天基数传时段的飞行器天线切换时刻为程序角突变时刻记为t0,设置平滑结束时刻记为tf;(2)根据步骤(1)利用差分方法可到t0和tf时刻飞行器的程序角变化率(3)根据步骤(2)利用三次多项式计算平滑时段的程序角。上述多约束自主飞行器的程序角优化设计方法,所述步骤(8c)中的三次多项式为:式中其中,θ为飞行器的程序角,a1θ、a2θ、a3θ、a4θ均为多项式系数,ψc、γc分别表征飞行器的俯仰程序角、偏航程序角和滚动程序角,θ0、θt分别为t0和tf时刻飞行器的程序角。本专利技术相比于现有技术具有如下有益效果:(1)本专利技术提出的程序角设计方案能够解决含有复合测控需求及多专业约束的程序角设计问题,适用于纯惯组导航配置下的长时间在轨飞行器程序控制方案;(2)本专利技术提出的优化设计方法能够有效实现程序角的平滑变化,综合考虑控制、遥测控及热控多专业约束,同时能够确保姿态变化幅度最小,燃料消耗最省;(3)本专利技术方法采用轨道系数据作为计算输入,降低程序角计算对飞行器发射时刻的依赖性,飞行时刻推迟与延后均不影响程序角计算结果,具备良好的适用性及鲁棒性;(4)本专利技术方法采用三次多项式对理论设计结果中突变时刻对应的程序角进行平滑,平滑后的效果好,最大化地减小飞行器的姿态变化。附图说明图1为本专利技术的步骤流程图;图2为本专利技术的对地定向段标准姿态示意图;图3为本专利技术的天基数传段标准姿态示意图;图4为本专利技术的本体坐标系至发射惯性坐标系转换过程流程图;图5为本专利技术的过渡坐标系示意图。具体实施方式为使本专利技术的目的、技术方案和优点更加清楚,下面将结合附图对本专利技术的实施方式作进一步详细描述。根据本文档来自技高网...
一种多约束自主飞行器的程序角优化设计方法

【技术保护点】
一种多约束自主飞行器的程序角优化设计方法,其特征在于:包括如下步骤:步骤一、设定对地定向时段起始时刻为T0,设定对地定向时段终止时刻和天基数传时段起始时刻均为T1,设定天基数传时段终止时刻为T2;步骤二、根据飞行器的轨道参数和发射点参数,基于本体坐标系相对于发射惯性坐标系的姿态转换矩阵,计算飞行器对地定向时段的程序角;步骤三、根据天基数传时段飞行器的天线对天基卫星的可见性,确定飞行器的天线和天基卫星,计算飞行器天基数传时段的程序角;步骤四、根据步骤二中飞行器对地定向时段的程序角和步骤三中飞行器天基数传时段的程序角进行平滑。

【技术特征摘要】
1.一种多约束自主飞行器的程序角优化设计方法,其特征在于:包括如下步骤:步骤一、设定对地定向时段起始时刻为T0,设定对地定向时段终止时刻和天基数传时段起始时刻均为T1,设定天基数传时段终止时刻为T2;步骤二、根据飞行器的轨道参数和发射点参数,基于本体坐标系相对于发射惯性坐标系的姿态转换矩阵,计算飞行器对地定向时段的程序角;步骤三、根据天基数传时段飞行器的天线对天基卫星的可见性,确定飞行器的天线和天基卫星,计算飞行器天基数传时段的程序角;步骤四、根据步骤二中飞行器对地定向时段的程序角和步骤三中飞行器天基数传时段的程序角进行平滑。2.根据权利要求1所述的一种多约束自主飞行器的程序角优化设计方法,其特征在于:所述步骤二中飞行器的轨道参数包括:真近点角f,近地点幅角ω,轨道倾角io,升交点赤经Ω;所述发射点参数包括:射向A0,发射点经度λ0,发射点纬度B0。3.根据权利要求1所述的一种多约束自主飞行器的程序角优化设计方法,其特征在于:所述步骤二中本体坐标系相对于发射惯性坐标系的姿态转换矩阵为:式中其中,rij(i=1,2,3,j=1,2,3)为姿态转换矩阵的元素,i为姿态转换矩阵的行序号,j为姿态转换矩阵的列序号,表示发射坐标系与发射惯性系的坐标转换矩阵,t为当前飞行时刻;表示地心直角坐标系与发射坐标系的坐标转换矩阵,表示地心第二轨道坐标系与地心直角坐标系的坐标转换矩阵,表示地心第二轨道坐标系与轨道坐标系的坐标转换矩阵,表示本体坐标系与轨道坐标系的坐标转换矩阵。4.根据权利要求1所述的一种多约束自主飞行器的程序角优化设计方法,其特征在于:所述步骤二中飞行器对地定向时段的程序角为:ψc=-arcsinr31式中其中,rij(i=1,2,3,j=1,2,3)为姿态转换矩阵的元素,i为姿态转换矩阵的行序号,j为姿态转换矩阵的列序号,ψc、γc分别表征飞行器的俯仰程序角、偏航程序角和滚动程序角,t为当前飞行时刻。5.根据权利要求1所述的一种多约束自主飞行器的程序角优化设计方法,其特征在于:对飞行器的天线和天基卫星分别设置序号,根据天基数传时段飞行器的天线对天基卫星的可见性,确定飞行器的天线和天基卫星的方法为:(5a)当上一周期所选定的飞行器的天线和上一周期所选定的天基卫星通信可见时,则选取上一周期所选定的飞行器的天线和上一周期所选定的天基卫星保持不变;否则转入步骤(5b);(5b)当上一周期所选定的飞行器的天线可见一颗以上的天基卫星时,则选取上一周期所选定的飞行器的天线和可见的天基卫星中序号最小的天基卫星通信;否则转入步...

【专利技术属性】
技术研发人员:张烽刘丙利童科伟胡冬生李扬陈蓉焉宁申麟高朝辉唐庆博唐琼张柳张雪梅
申请(专利权)人:中国运载火箭技术研究院
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1