一种携带井下换热室的地能干热岩树状多点换热系统技术方案

技术编号:17769130 阅读:82 留言:0更新日期:2018-04-21 22:16
一种携带井下换热室的地能干热岩树状多点换热系统,属于清洁能源技术领域,解决地能干热岩热量提取效率低、地下换热流体流失率高的技术问题,解决方案为:由碳纤维和钛镍金属丝混纺编制成换热管单体,由换热管单体与换热封装套管制成换热管组,换热管组外包裹有包覆层;主井底部设置有分离板,换热管组设置于主井内,换热管组经分离板分离后,换热管延伸至相应副井中,副井尾端设置有换热室,腔体内壁均设置有磁化钢板,副井与换热室连通。本实用新型专利技术主井与副井呈树状分布,有利于高效集约化的干热岩地热能换热,换热室空间大且与干热岩层直接接触,换热介质在换热室内高效换热,换热管降低了换热介质资源浪费的同时提高了换热效率。

【技术实现步骤摘要】
一种携带井下换热室的地能干热岩树状多点换热系统
本技术属于清洁能源
,特别涉及一种携带井下换热室的地能干热岩树状多点换热系统。
技术介绍
地热资源与其他新能源如太阳能、风能和生物质能等相比,具有分布广、受外界影响小(如昼夜、风速、温差)、碳排放量及维护成本低等特点,地热资源主要分为水热型和干热岩型,干热岩型地热是指存储于深度3-10km高温岩体或岩浆中的热量,储层温度可达100~650℃。目前世界各国主要利用的水热型中低温地热仅占探明地热资源的极小一部分,而中高温干热岩地热资源在地球上的蕴藏量丰富且温度高。据国家有关部门最新数据显示,我国大陆3~10千米深处干热岩资源总量相当于860万亿吨标煤;若能开采出2%,就相当于2010年全国一次性能耗总量(32.5亿吨标煤)的5300倍。所以,中高温干热岩地热的开发极有可能为我国节能减排和新一轮能源结构调整做出重大贡献,合理地开采储层深部地热能不仅可能起到节能减排和能源调整作用,更可为偏远地区能源需求提供保障。中高温地热资源开发具有很大的技术挑战。因此,美国科学家提出采用增强型地热系统的方式进行开发,现有技术中干热岩地热利用要求在地下形成广泛的岩石裂隙,通过水流经裂隙实现与干热岩的热交换。换句话说,要造出地下热储水库。目前,主要有人工高压裂隙、天然裂隙、天然裂隙-断层三种模式,其中研究最多的是人工高压裂隙模式,即通过人工高压注水到井底,高压水流使岩层中原有的微小裂隙强行张开或受水冷缩产生新的裂隙,水在这些裂隙间流通,完成注水井和生产井所组成的水循环系统热交换过程。由于干热岩具有渗透率低、孔隙率低、储层位置深等特性,造成地热利用效率低,即地层热提取效率低和地下换热流体流失率高。总体来说,干热岩钻井技术已不成问题,储层压裂不可控性造成的泄露问题和渗流通道的高效流动是制约干热岩开发的主要问题。到目前为止,还没有一种可以高效又安全的干热岩地热开采方式。
技术实现思路
为了解决现有技术中存在的不足,解决地能干热岩热量提取效率低、地下换热流体流失率高的技术问题,本技术提供一种携带井下换热室的地能干热岩树状多点换热系统。本技术通过以下技术方案予以实现。一种携带井下换热室的地能干热岩树状多点换热系统,它包括换热管组、换热井、分离板和换热室,所述换热管组包括换热管和换热封装套管,换热井包括主井和副井,其中:由碳纤维和钛镍金属丝混纺编制成空心换热管单体,内径由大到小的多根换热管单体由内向外套设在一起形成换热管,相临两层换热管单体之间设置有缝隙;所述换热封装套管侧壁设置有空腔,换热管封装于换热封装套管的空腔中,若干根封装后的换热封装套管环抱呈圆柱体,形成换热管组,换热管组外包裹有包覆层;换热封装套管内壁设置有注液管,注液管延伸至换热封装套管底部,注液管与换热封装套管一体成型,换热封装套管内壁顶部还设置有抽液管;所述主井竖直设置于地表内,主井底部设置有分离板,主井下底面与若干副井连通,所述副井由竖井或斜井或水平井或上述不同形态的井任意组合形成,竖井、斜井与水平井首尾相接,根据地热能实际储量分别设置每一副井中水平井的角度与深度,副井尾端设置有换热室,换热室为密闭空心腔体,腔体内壁均设置有磁化钢板,副井与换热室连通;换热管组设置于主井内,换热管组经分离板分离后,换热管分别延伸至相应副井中;所述主井与副井内壁均设置有护井套管。进一步地,所述分离板包括分离板基座、分离切片与导向板,分离切片竖直设置于分离板基座上表面上,分离切片刃口向上,分离板基座上位于分离切片之间设置有换热管通过孔,导向板设置于换热管通过孔下方。进一步地,若干抽液管汇集成主抽液管,主抽液管出水口与泵连接。进一步地,所述护井套管的材质为钢管。进一步地,所述钛镍金属丝中钛与镍的质量比为:WTi%:WNi%=(44~46)%:(54~56)%。进一步地,所述换热室的体积为10平方米。本技术与现有技术相比具有以下有益效果。本技术提供的一种携带井下换热室的地能干热岩树状多点换热系统,换热管采用碳纤维和钛镍金属丝混纺编制成,当外界温度高于钛镍金属丝的设定温度时,换热管之间的缝隙减小,换热管紧贴岩层,增大与热源的接触面积;当外界温度低于钛镍金属丝的设定温度时,换热管之间的缝隙增大,形成隔热层,取热介质中的热量不易流失至外界环境;此外,换热管还具有耐腐蚀、耐热、耐久的特性。换热套管约束了换热介质的流失,有利于节约水资源,提高换热效率,主井与副井呈树状分布,降低了钻井数目,有利于高效集约化的干热岩地热能换热。另外,副井尾端连接换热室,换热室空间大,并且换热室侧壁与干热岩层直接接触,换热介质可在换热室内高效地进行换热。附图说明图1为本专利技术整体结构示意图。图2为分离板处俯视结构截面图。图3为水平井末端局部剖面图。图4为分离板主视示意图。图5为分离板俯视示意图。图6为六根换热管组合成换热组的俯视截面图。图7为单根换热管的俯视截面图。图中,1为换热管组,11为换热管,12为换热封装套管,13为抽液管,14为注液管,15为包覆层,2为换热井,21为主井,22为副井,221为竖井,222为斜井,223为水平井,23为护井套管,3为分离板,31为分离板基座,32为分离切,33为导向板,34为换热管通过孔,4为换热室,Ⅰ为第Ⅰ副井,Ⅱ为第Ⅱ副井,Ⅲ为第Ⅲ副井,Ⅳ为第Ⅳ副井。具体实施方式下面结合实施例对本技术做详细说明:本实施例是以本技术技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本技术的保护范围不限于下面的实施例。如图1~7所示,一种携带井下换热室的地能干热岩树状多点换热系统,它包括换热管组1、换热井2、分离板3和换热室4,所述换热管组1包括换热管11和换热封装套管12,换热井2包括主井21和副井22,其中:由碳纤维和钛镍金属丝混纺编制成空心换热管单体,内径由大到小的多根换热管单体由内向外套设在一起形成换热管11,相临两层换热管单体之间设置有缝隙;所述换热封装套管12侧壁设置有空腔,换热管11封装于换热封装套管12的空腔中,若干根封装后的换热封装套管12环抱呈圆柱体,形成换热管组1,换热管组1外包裹有包覆层15;换热封装套管12内壁设置有注液管14,注液管14延伸至换热封装套管12底部,注液管14与换热封装套管12一体成型,换热封装套管12内壁顶部还设置有抽液管13;所述主井21竖直设置于地表内,主井21底部设置有分离板3,主井21下底面与若干副井22连通,所述副井22由竖井221或斜井222或水平井223或上述不同形态的井任意组合形成,竖井221、斜井222与水平井223首尾相接,根据地热能实际储量分别设置每一副井22中水平井223的角度与深度,副井22尾端设置有换热室4,换热室4为密闭空心腔体,腔体内壁均设置有磁化钢板,副井22与换热室4连通;换热管组1设置于主井21内,换热管组1经分离板3分离后,换热管11分别延伸至相应副井22中;所述主井21与副井22内壁均设置有护井套管23。进一步地,所述分离板3包括分离板基座31、分离切片32与导向板33,分离切片32竖直设置于分离板基座31上表面上,分离切片32刃口向上,分离板基座31上位于分离切片32之间设置有换热管通过孔34,导向板33本文档来自技高网
...
一种携带井下换热室的地能干热岩树状多点换热系统

【技术保护点】
一种携带井下换热室的地能干热岩树状多点换热系统,它包括换热管组(1)、换热井(2)、分离板(3)和换热室(4),所述换热管组(1)包括换热管(11)和换热封装套管(12),换热井(2)包括主井(21)和副井(22),其特征在于:由碳纤维和钛镍金属丝混纺编制成空心换热管单体,内径由大到小的多根换热管单体由内向外套设在一起形成换热管(11),相临两层换热管单体之间设置有缝隙;所述换热封装套管(12)侧壁设置有空腔,换热管(11)封装于换热封装套管(12)的空腔中,若干根封装后的换热封装套管(12)环抱呈圆柱体,形成换热管组(1),换热管组(1)外包裹有包覆层(15);换热封装套管(12)内壁设置有注液管(14),注液管(14)延伸至换热封装套管(12)底部,注液管(14)与换热封装套管(12)一体成型,换热封装套管(12)内壁顶部还设置有抽液管(13);所述主井(21)竖直设置于地表内,主井(21)底部设置有分离板(3),主井(21)下底面与若干副井(22)连通,所述副井(22)由竖井(221)、斜井(222)、水平井(223)组成,竖井(221)、斜井(222)与水平井(223)首尾相接,根据地热能实际储量分别设置每一副井(22)中水平井(223)的角度与深度,副井(22)尾端设置有换热室(4),换热室(4)为密闭空心腔体,腔体内壁均设置有磁化钢板,副井(22)与换热室(4)连通;换热管组(1)设置于主井(21)内,换热管组(1)经分离板(3)分离后,换热管(11)分别延伸至相应副井(22)中;所述主井(21)与副井(22)内壁均设置有护井套管(23)。...

【技术特征摘要】
1.一种携带井下换热室的地能干热岩树状多点换热系统,它包括换热管组(1)、换热井(2)、分离板(3)和换热室(4),所述换热管组(1)包括换热管(11)和换热封装套管(12),换热井(2)包括主井(21)和副井(22),其特征在于:由碳纤维和钛镍金属丝混纺编制成空心换热管单体,内径由大到小的多根换热管单体由内向外套设在一起形成换热管(11),相临两层换热管单体之间设置有缝隙;所述换热封装套管(12)侧壁设置有空腔,换热管(11)封装于换热封装套管(12)的空腔中,若干根封装后的换热封装套管(12)环抱呈圆柱体,形成换热管组(1),换热管组(1)外包裹有包覆层(15);换热封装套管(12)内壁设置有注液管(14),注液管(14)延伸至换热封装套管(12)底部,注液管(14)与换热封装套管(12)一体成型,换热封装套管(12)内壁顶部还设置有抽液管(13);所述主井(21)竖直设置于地表内,主井(21)底部设置有分离板(3),主井(21)下底面与若干副井(22)连通,所述副井(22)由竖井(221)、斜井(222)、水平井(223)组成,竖井(221)、斜井(222)与水平井(223)首尾相接,根据地热能实际储量分别设置每一副井(22)中水平井(223)的角度与深度,副井(22)尾端设置有换热室(4),换热室(4)为密闭空心腔体,...

【专利技术属性】
技术研发人员:米光明白建盛崔建平张雨石星
申请(专利权)人:山西泰杰地能干热岩有限公司
类型:新型
国别省市:山西,14

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1